RESUMO
The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.
Assuntos
Arsênio , Biodegradação Ambiental , Carvão Vegetal , Oryza , Poluentes do Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Arsênio/metabolismo , Poluentes do Solo/metabolismo , Compostagem/métodos , Araceae/metabolismo , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Solo/químicaRESUMO
BACKGROUND: Vermicompost contains humic acids, nutrients, earthworm excretions, beneficial microbes, growth hormones, and enzymes, which help plants to tolerate a variety of abiotic stresses. Effective microorganisms (EM) include a wide range of microorganisms' e.g. photosynthetic bacteria, lactic acid bacteria, yeasts, actinomycetes, and fermenting fungi that can stimulate plant growth and improve soil fertility. To our knowledge, no study has yet investigated the possible role of vermicompost and EM dual application in enhancing plant tolerance to water scarcity. METHODS: Consequently, the current study investigated the effectiveness of vermicompost and EM in mitigating drought-induced changes in wheat. The experiment followed a completely randomized design with twelve treatments. The treatments included control, as well as individual and combined applications of vermicompost and EM at three different irrigation levels (100%, 70%, and 30% of field capacity). RESULTS: The findings demonstrated that the application of vermicompost and/or EM significantly improved wheat growth and productivity, as well as alleviated drought-induced oxidative damage with decreased the generation of superoxide anion radical and hydrogen peroxide. This was achieved by upregulating the activities of several antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. Vermicompost and/or EM treatments also enhanced the antioxidant defense system by increasing the content of antioxidant molecules such as ascorbate, glutathione, phenolic compounds, and flavonoids. Additionally, the overproduction of methylglyoxal in water-stressed treated plants was controlled by the enhanced activity of the glyoxalase system enzymes; glyoxalase I and glyoxalase II. The treated plants maintained higher water content related to the higher content of osmotic regulatory substances like soluble sugars, free amino acids, glycinebetaine, and proline. CONCLUSIONS: Collectively, we offer the first report that identifies the underlying mechanism by which the dual application of vermicompost and EM confers drought tolerance in wheat by improving osmolyte accumulation and modulating antioxidant defense and glyoxalase systems.
Assuntos
Antioxidantes , Secas , Triticum , Triticum/fisiologia , Triticum/metabolismo , Antioxidantes/metabolismo , Lactoilglutationa Liase/metabolismo , Compostagem , Osmorregulação , Oligoquetos/fisiologia , Oligoquetos/metabolismo , Regulação para Cima , Microbiologia do Solo , Animais , Solo/química , Resistência à Seca , Tioléster HidrolasesRESUMO
Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.
Assuntos
Phaseolus , Doenças das Plantas , Raízes de Plantas , Rhizoctonia , Serratia marcescens , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Serratia marcescens/fisiologia , Serratia marcescens/metabolismo , Rhizoctonia/fisiologia , Raízes de Plantas/microbiologia , Agentes de Controle Biológico/farmacologia , Controle Biológico de Vetores , Antibiose , Hypocreales/fisiologia , Hypocreales/metabolismo , Egito , Compostagem , Microbiologia do SoloRESUMO
Gut digestion by earthworms (GDE) is a crucial step in vermicomposting, affecting the fate of antibiotic resistance genes (ARGs) in vermicompost sludge. The extracellular polymeric substance (EPS) matrix of sludge is an important space for ARG transfer. However, the effect of GDE on EPS-associated ARGs remains unclear. Therefore, this study explored the role of GDE in driving the transfer of ARGs within different EPS layers in sludge. For this, the changes in intracellular ARGs and EPS-associated ARGs in sludge were analyzed after 5 days of the GDE process. The results showed that after the GDE process, both nitrate and dissolved organic carbon significantly increased in all EPS layers of sludge, while the proteins and polysaccharides only enhanced in soluble and loosely bound EPS of sludge. In addition, a 7.0% decrease in bacterial diversity was recorded after the GDE process, with a functional bacterial community structure emerging. Moreover, the absolute abundance of total ARGs and mobile genetic elements decreased by 90.71% and 61.83%, respectively, after the GDE process. Intracellular ARGs decreased by 92.1%, while EPS-associated ARGs increased by 4.9%, indicative of intracellular ARG translocation into the EPS during the GDE process. Notably, the ARGs exhibited significant enrichment in both the soluble and loosely bound EPS, whereas they were reduced in the tightly bound EPS. The structural equation modeling revealed that the GDE process effectively mitigated the ARG dissemination risk by modulating both the EPS structure and microenvironment, with the organic structure representing a primary factor influencing ARGs in the EPS.
Assuntos
Compostagem , Matriz Extracelular de Substâncias Poliméricas , Oligoquetos , Esgotos , Oligoquetos/genética , Oligoquetos/metabolismo , Animais , Esgotos/microbiologia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Genes Bacterianos , Bactérias/genética , Bactérias/efeitos dos fármacosRESUMO
Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris [Frank] Donk) is an aggressive soilborne pathogen with a wide host range that survives saprophytically between crops, presenting a challenge for organic vegetable farmers who lack effective management tools. A 2-year field experiment was conducted at two organic farms to compare anaerobic soil disinfestation (ASD) and worm-cured compost (vermicompost) to manage bottom rot caused by R. solani subspecies AG1-IB in field-grown organic lettuce (Lactuca sativa). At each farm, four replicate plots of seven treatments were arranged in a randomized complete block design. Randomization was restricted by grouping treatments to evaluate ASD, and treatments to evaluate vermicompost in starter plugs. ASD experiment treatments were three different ASD carbon sources that are commonly used and widely available to local farmers in Vermont: compost, cover crop residues, and poultry manure fertilizer, as well as a tarped control. Vermicompost experimental treatments were vermicompost compared with two types of controls: a commercial biocontrol product (RootShield PLUS + G), and unamended (untarped control). This study demonstrated that the ASD method is achievable in a field setting on Vermont farms. However, neither ASD nor vermicompost produced significant disease suppression or resulted in higher marketable yields than standard growing practices. Given the laborious nature of ASD, it is likely more appropriate in a greenhouse setting with high-value crops that could especially benefit from being grown in plastic tarped beds (e.g., tomatoes and strawberries). This study is the first known attempt of field-implemented ASD for soil pathogen control in the northeastern United States.
Assuntos
Compostagem , Lactuca , Doenças das Plantas , Rhizoctonia , Solo , Lactuca/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Compostagem/métodos , Solo/química , Rhizoctonia/fisiologia , Microbiologia do Solo , Anaerobiose , Agricultura Orgânica/métodosRESUMO
This study focused on the waste management of livestock manure and wetland plant residues and their increasing effect on terrestrial and aquatic ecosystems. The benefits of nutrient-rich plants and manures are often overlooked. By conducting a soil column experiment with a fully factorial design, this work found that adding the vermicompost amendments of wetland plants [combination of Canna indica (CiV), Cyperus alternifollius (CaV), Acorus calamus (AcV), and Hydrocotyle vulgaris (HvV) vermicompost] to agricultural wastes affected maize growth throughout its growing season. The results demonstrated that the use of combined AcV and HvV wetland plant-based vermicompost as an organic fertilizer increased the plant total nitrogen (TN: 92% increase) and soil organic matter (SOM: 192% increase) compared with those in control CK. Meanwhile, the combination of CaV with HvV increased the shoot biomass by 3.4 and 4.6 folds compared with that in NPK and CK, respectively. Overall, a new approach for transforming ecological wastes into organic fertilizers was proposed.
Assuntos
Agricultura , Ecossistema , Agricultura/métodos , Solo/química , Plantas , Tecnologia , Fertilizantes , Esterco , NitrogênioRESUMO
The demand for food is increasing and the use of soil organic amendments in agricultural management practices has been instructed to increase crop yield and reduce dependence on synthetic inorganic fertilizers at low cost to limited resource farmers. However, the effect of organic amendments on the quality and nutritional composition of edible plants has received little attention. Locally available organic amendments (sewage sludge SS, chicken manure CM, cow manure Cow, vermicompost Vermi, and biochar Bio) were chosen to test their impact on field-grown sweet potato, Ipomoea batatas L. yield, root quality, and root nutritional composition. The results indicated that utilizing Cow manure in growing sweet potatoes significantly promoted root yield and root nutritional composition. Cow treatment produced the greatest number of roots compared to Bio, CM, SS, and the control treatments. The results also revealed that the concentrations of vitamin C (260. 3 µg g-1), ß-carotene (45.4 µg g-1), soluble sugars (16.7 mg g-1), and total phenols (196.3 3 µg g-1 fresh roots) were greater in the roots of plants grown in Cow compared to the roots of the control treatment. The results indicated the low impact of biochar whereas Cow is recommended for enhancing sweet potato yield and nutritional composition.
Assuntos
Fertilizantes , Ipomoea batatas , beta Caroteno , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Agricultura/métodos , Fenóis/análise , Esterco , Esgotos , Solo/química , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Raízes de PlantasRESUMO
Phosphorus (P) plays an important role in immobilizing heavy metals (HMs), thereby preventing their accumulation, especially in edible parts of crops. In this study, vermicompost (VM) and chemical fertilizers (CFs) were used as soil amendments to increase the available P concentration in soil contaminated with cadmium (Cd) and nickel (Ni), with the aim of reducing their bioavailability, uptake, and bioaccessibility. Using CF and VM as soil amendments substantially increased the available P and exchangeable potassium concentrations in the soil. Furthermore, VM addition led to an increase in OM content and in exchangeable calcium and magnesium, resulting in the improved growth of lettuce. It also reduced the uptake of Cd and Ni in the two lettuce cultivars tested in the study. However, CF addition boosted the accumulation of Cd and Ni by increasing the soil acidity. CF addition, and especially VM addition, altered the chemical forms of Cd and Ni from active to inactive. Overall, the results of this study underscore the positive impact of using VM as a soil amendment on lettuce growth and the prevention of HM accumulation in edible parts of lettuce. VM addition led to decreased bioavailability, uptake, and bioaccessibility of HMs in soil, which could improve food safety and reduce potential risks associated with HM contamination.
Assuntos
Disponibilidade Biológica , Lactuca , Metais Pesados , Fósforo , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Solo/química , Fertilizantes , Cádmio/metabolismo , Níquel , Compostagem/métodosRESUMO
Improper pesticide handling is the main cause of contamination of the environment in agricultural systems. This could be caused by leakage of spraying liquid, leftovers, and inappropriate washing of spraying equipment. This study assessed the ability of suggested biomixture modules for remediate repetitive cycles of high chlorpyrifos doses. In three consecutive treatments, four tested modules were contaminated with 160 µg g-1 chlorpyrifos. Chlorpyrifos residues, dehydrogenase activity, and microbial respiration were continuously monitored for 22 weeks. Six bacterial consortia were isolated at the end of the experiment from four treated modules (B+3, BF+3, S+3, and SF+3) and two from untreated modules (B and S). The isolated consortium efficiency in degrading chlorpyrifos was studied. The results revealed that the best chlorpyrifos removal efficiency was achieved when using the stimulated biomixture module (BF) recorded 98%, 100%, and 89%, at the end of three chlorpyrifos treatments, respectively. Such removal efficiency was compatible with the biological activity results of the tested modules: dehydrogenase activity and microbial respiration. There was no difference in the efficiency among the S, B, and BF+3 consortia. The results presented here demonstrate that the combination of vermicompost, wheat straw, soil, and NPK (stimulated biomixture module) can successfully reduce the risk of a point source of pesticide pollution.
Assuntos
Clorpirifos , Praguicidas , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Praguicidas/análise , Solo/química , Oxirredutases , Microbiologia do Solo , Poluentes do Solo/análiseRESUMO
The dissemination of antibiotic resistance genes (ARGs) in soil has become a global environmental issue. Vermicomposting is gaining prominence in agricultural practices as a soil amendment to improve soil quality. However, its impact on soil ARGs remains unclear when it occurs in farmland. We comprehensively explored the evolution and fate of ARGs and their hosts in the field soil profiles under vermicompost application for more than 3 years. Vermicompost application increased several ARG loads in soil environment but decreased the high-risk bla-ARGs (blaampC, blaNDM, and blaGES-1) by log(0.04 - 0.43). ARGs in soil amended with vermicompost primarily occurred in topsoil (approximately 1.04-fold of unfertilized soil), but it is worth noting that their levels in the 40-60 cm soil layer were the same or even less than in the unfertilized soil. The microbial community structure changed in soil profiles after vermicompost application. Vermicompost application altered the microbial community structure in soil profiles, showing that the dominant bacteria (i.e., Proteobacteria, Actinobacteriota, Firmicutes) were decreased 2.62%-5.48% with the increase of soil depth. A network analysis further revealed that most of ARG dominant host bacteria did not migrate from surface soil to deep soil. In particular, those host bacteria harboring high-risk bla-ARGs were primarily concentrated in the surface soil. This study highlights a lower risk of the propagation of ARGs caused by vermicompost application and provides a novel approach to reduce and relieve the dissemination of ARGs derived from animals in agricultural production.
Assuntos
Antibacterianos , Solo , Animais , Solo/química , Genes Bacterianos , Esterco/análise , Microbiologia do Solo , Bactérias/genética , Produtos AgrícolasRESUMO
Vermicompost is a promising amendment for immobilization of cadmium (Cd) in soils; however, its effectiveness can be influenced by rhizosphere environment conditions, such as pH and the presence of low-molecular-weight organic acids (LMWOAs). In this study, a batch experiment was conducted to examine the characteristics of Cd adsorption by vermicompost at different pH (pH = 3, 5, and 7) and after the addition of different LMWOAs (oxalic acid; citric acid; malic acid). Furthermore, a series of morphology and structural analyses were conducted to elucidate the mechanisms of observed effects. The results showed that the adsorption capacity of vermicompost for Cd increased as pH increased, and chemisorption dominated the adsorption process. Changes in pH altered adsorption performance by affecting the -OH groups of alcohol/phenol and the -CH2 groups of aliphatics. Further, the addition of oxalic acid promoted Cd adsorption, and the effect was concentration dependent. Modifying the verimicompost surface with more adsorption sites might be the main reason. Conversely, citric acid and malic acid showed the ability to inhibit Cd adsorption by vermicompost. Citric acid caused a blocking effect by covering flocculent substances on the vermicompost surface while reducing surface adsorption sites by dissolving mineral components such as iron oxides. However, the action of malic acid did not appear to be related to changes in morphology or the structure of vermicompost. Overall, the results of this study partially explain the limited effectiveness of Cd immobilization within the rhizosphere by vermicompost, and provide theoretical support for regulating rhizosphere environments to improve the effectiveness of vermicompost immobilization of Cd.
Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Adsorção , Rizosfera , Solo/química , Compostos Orgânicos , Ácido Oxálico/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Poluentes do Solo/análiseRESUMO
Leucojum aestivum L. contains galanthamine and lycorine, which are two pharmaceutically valuable alkaloids. Vermicompost (VC), an organic waste product created by earthworms enhances soil quality and can improve the medicinal quality of the plant that is crucial to the pharmaceutical industry. The aim of this study was to determine the effects of four different VC concentrations (5 %, 10 %, 25 %, and 50 %) on L. aestivum growth parameters, alkaloid levels (galanthamine and lycorine), total phenol-flavonoid content, free radical scavenging potential, and defense enzyme activities (SOD and CAT) compared to control (no VC). The width, length, and fresh weight of the leaves were improved by 10 % VC treatment. The highest total phenolic content was found in the bulbs and leaves treated with 50 % VC. HPLC-DAD analysis of alkaloids showed that 10 % and 50 % VC treatments contained the most galanthamine in the bulb and leaf extracts, respectively. The application of 25 % VC was the most efficient in terms of lycorine content in both extracts. CAT activity was elevated at 10 %, 25 %, and 50 % VC. Based on the growth performance and galanthamine content of the bulbs and leaves, it can be concluded that a 10 % VC application was the most effective in the cultivation of L. aestivum.
Assuntos
Alcaloides , Liliaceae , Galantamina/farmacologia , Alcaloides/farmacologia , Alcaloides/análise , Fenóis/farmacologia , Radicais LivresRESUMO
Vermicomposting involves enrichment of microorganisms that are able to resist higher temperatures and perform simultaneous degradation of lignocellulose, and therefore, such microbial communities are a potential source of cellulolytic enzymes. This study aimed to optimize the production of a processive cellulase by Parageobacillus thermoglucosidasius NBCB1 isolated from vermicompost, under submerged fermentation of rice straw and to characterize the purified enzyme for industrial suitability. Cellulase production in basal medium (7.27 IU/mg) was enhanced to 61 IU/mg by One Factor At a Time approach, which was further improved to 78.46 IU/mg by genetic algorithm based artificial neural networking. The cellulase PtCel1 purified from bacterial culture showed a molecular weight of ≈33 kD, had activity on both crystalline (305 IU/mg) and amorphous (184 IU/mg) cellulose as substrates. It had pH and temperature optima of 5.5°C and 60°C, respectively, and retained 100% activity upon preincubation at 60°C for 1 h indicating thermostability. PtCel1 was tolerant to sodium dodecyl sulfate, glucose and mannose; and the various metal chlorides, such as sodium, magnesium, calcium and zinc, acted as inducers giving 77.54%, 45.15%, 61.10%, and 169.14% augmentation of activity, respectively. Its efficiency on cellulosic substrates and robustness against aforementioned chemical and thermal environment makes it suitable for industrial applications.
Assuntos
Celulase , Celulase/metabolismo , Celulose/metabolismo , Fermentação , TemperaturaRESUMO
Vermicomposting is a sustainable sludge recycling technology that utilizes an eco-friendly composting using earthworms and microorganisms. However, a high abundance of antibiotic resistance genes (ARGs) remains in dewatered sludge that is not satisfactorily eliminated by vermicomposting. Chinese herbs have played a major role in curing many diseases in East Asia, leading to a large amount of Chinese herbal residues (CHRs) are difficult to dispose of. The present study investigated the feasibility of CHRs on the ARGs reduction in dewatered sludge during vermicomposting. The CHRs derived from Lianhua Qingwen were added separately to sludge with weight ratios of 0%, 10%, 30%, and 50%; sludge was then vermicomposted for 30 days. The results showed that co-vermicomposting of sludge and CHRs is a feasible strategy. The CHR treatments significantly (P < 0.05) decreased antibiotic concentration and bacterial population by 23.64%-49.68% and 42.58%-93.07%, respectively, compared to counterpart. Compared to the control, the CHR addition lowered the absolute abundances of macrolide, tetracycline, and sulfonamide ARGs by 42.69%-85.15%, 22.03%-75.24%, and 23.59%-90.66%, respectively. In addition, sludge containing 30% CHRs showed significant (P < 0.05) elimination of intâ -1 and tnpA-4 genes with abundance reductions of 71.40% and 52.33%, respectively, relative to the control. This study suggests that the CHRs can effectively reduce ARGs content in sludge by decreasing the bacterial population and horizontal gene transfer capacity during vermicomposting.
RESUMO
Fly ash is an inevitable by-product from the coal-fired power plants in many developing countries including India that needs safe, timely and productive disposal. The addition of fly ash alters physicochemical properties of soil and hence could be used as a soil conditioner or modifier along with the appropriate level of vermicompost to support plant growth. Several studies have focalized sole use of fly ash and vermicompost in agricultural production systems lacking information on combined application effects. This work was carried out at Chiplima in the district of Sambalpur, Odisha, India, to ascertain the best suited combination of native soil, fly ash and vermicompost (from farmyard manure) for rice nursery based on the changing physicochemical properties and seedling growth. The experiment consisting of 21 treatment combinations of soil, fly ash and vermicompost at 0%, 20%, 40%, 60%, 80% and 100% by weight was laid out in a factorial complete randomized design with three replications. Fly ash and vermicompost at moderate concentrations significantly ameliorated the physical properties, viz., porosity, bulk and particle densities, water holding capacity, infiltration rate and the capillary rise of water in rice nursery soil that ultimately resulted in vigorous rice seedlings at 40 DAS through beneficial soil biota as well as better root and shoot development. The porosity, water holding capacity and infiltration rate significantly increased with the addition of vermicompost while fly ash addition substantially reduced them. Fly ash and vermicompost in moderate quantities smothered soil chemical properties like electrical conductivity and organic carbon that increased the availability of N, P, K, B, S and Zn. The pH did not differ significantly due to treatment effects owing to a marginal difference in pH of the substrates, whereas electrical conductivity increased significantly with only marginal addition of fly ash to vermicompost. Considering the economic feasibility and environmental impacts, 40% soil + 20% fly ash + 40% vermicompost may be recommend to the farmers for wet rice nursery raising and also for remediating the coal fly ash in agricultural production system.
Assuntos
Oryza , Solo , Solo/química , Cinza de Carvão/análise , Plântula , Carvão MineralRESUMO
An integrated approach involving vermicompost, chromate reducing bacteria and AMF was tested to manage the toxic impacts of Cr(VI) on Ocimum basilicum as a model plant. Pot experiments were conducted on O. basilicum plants in an artificially Cr(VI)-contaminated soil in two phases of experiment as bioinoculants experiment and vermicompost experiment. In the first phase of the bioinoculants experiment the series of gradient concentrations of Cr(VI) (0, 25, 50 and 100 mg kg-1 in soil) were evaluated with previously isolated four efficient Cr(VI)-reducing rhizo-bacterial strains (Bacillus Cereus strain SUCR 44, BC; Microbacterium sp. strain SUCR 140, MB; Bacillus thuringiensis strain SUCR186, BT; and Bacillus subtilis strain SUCR188; BS) along with Arbuscular Mycorrhizal Fungus-Glomus fasciculatum (GF) in alone and in co-inoculation form. In the second experiment (vermicompost) the best performing strain (MB) was tested alone or in combination with GF along with different doses of vermicompost. It was observed that vermicompost by itself could be useful in decreasing the bioavailable Cr(VI), uptake of Cr besides improving the nutritional status of plants. The vermicompost also played an important and indirect role and improved herb yield by supporting the multiplication of MB (Microbacterium sp.), an efficient chromate reducing rhizobacteria, that further decreased the bioavailable and toxic form of Cr and improved population and colonization of GF too. The translocation of Cr(VI) was averted through improved colonization of GF, also prevented higher accumulation of Cr in aerial parts (leafy herb) of O. basilicum.
Assuntos
Alphaproteobacteria , Micorrizas , Ocimum basilicum , Poluentes do Solo , Bacillus cereus , Cromatos , Cromo , Plantas , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidadeRESUMO
Vermicompost (VC) harbours diverse microbes, including plant growth-promoting microorganisms (PGPM) that are beneficial for sustainable crop production. Hence, this study aimed to analyse bacterial diversity of VC samples as a first high-throughput screening step towards subsequent targeted isolation of potential bacterial inoculum candidates. To achieve this, bacterial communities in VC collected from five production farms were enriched in nutrient-rich media before high-throughput sequence (HTS) analysis of the partial 16S rRNA gene. HTS analysis revealed 572 amplicon sequence variants (ASVs) in all enriched VC samples. Firmicutes, Proteobacteria, Planctomycetes and Bacteroidetes were the most dominant phyla, while Lysinibacillus, Escherichia-Shigella, Bacillus, Pseudomonas, Clostridium sensu stricto 1, Morganella, Vibrio and Aeromonas were the predominant genera across the enriched VC. The presence of Clostridium sensu stricto 1, Escherichia-Shigella and Vibrio genera, which are potentially pathogenic species, suggests the need to improve vermicomposting efficiency and safety. Predicted functional profiling of the bacterial communities using PICRUSt2 showed abundance profiles of nitrogenases, phosphatases and sulfatases. In addition, the potential to produce siderophore, indole acetic acids (IAA) and phytohormone regulator 1-aminocyclopropane-1-carboxylate (ACC) were predicted. Lysinibacillus, Bacillus, Paenibacillus and Pseudomonas were major bacterial communities with potential plant growth-promoting traits and could serve as resources in bacterial inoculum production. The findings in this study provide insight into the community composition, abundance and the potential functional capability of cultivable bacterial species of enriched VC. This study also points to VC as a suitable source of potentially beneficial bacterial candidates for inoculum production.
Assuntos
Bacillus , Paenibacillus , Bacillus/genética , Bioprospecção , Paenibacillus/genética , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S/genéticaRESUMO
In recent years, enormous amounts of spent mushroom substrate (SMS) have been generated because of the rapid development of mushroom production. Since the conventional disposal methods of these residues can cause serious environmental problems, alternative waste management techniques are required to ensure sustainable agriculture. However, SMS might be not suitable for vermicomposting when used alone. Therefore, the primary purpose of this study was to investigate the effect of Azolla microphylla (Azolla) biomass, eggshells, fruit peels, and cassava pulp on the biodegradation process of SMS. The results showed the treatments supplemented with cassava pulp and fruit peel waste improved the growth of earthworms, while the carbon-to-nitrogen ratio of these vermicomposts decreased significantly (p < 0.05) due to the improved total nitrogen contents (7.64 g kg-1 and 6.71 g kg-1). Concerning the degradation process and the vermicompost quality, the addition of these agro-residues facilitated the enzyme activities (cellulase, urease, and alkaline phosphatase) and increased the total macronutrient (P, K, Mg, and Ca) and phytohormone (fruit peel waste: AA, GA3, and cytokinin; cassava pulp: cytokinin) contents of the final products compared to the control treatment. On the other hand, Azolla had no additional effect on the fecundity and growth of Eudrilus eugenia. Meanwhile, the treatment supplemented with eggshells was high in Mg (7.15 g kg-1) and Ca (305.6 g kg-1). Overall, the combined decomposition of SMS-based bedding material with Azolla, eggshells, fruit peel waste, and cassava pulp resulted in mature organic fertilizers with improved chemical properties.
Assuntos
Agaricales , Oligoquetos , Animais , Citocininas , Esterco , Nitrogênio , Nutrientes , Reguladores de Crescimento de Plantas , SoloRESUMO
Vermicomposting is recommended as an eco-friendly technology for an organic amendment to avoid the excessive use of inorganic fertilizers, which are causing environmental pollution. Here, this study evaluated soil fertility and plant growth after vermicompost amendment using reclaimed wetland plants and manure. A pot experiment was conducted to assess the seven treatments for nutrient recovery and plant growth: a control group without any fertilization (CK); four groups with vermicompost prepared from different ratios of ecological wetland plant residues, maize, and pig manure (V1, 4:6; V2, 5:5; V3, 6:6; and V4, 7:3); one group with only Canna indica (V5, Ci), and a group with synthetic fertilizers (NPK). The results showed the remarkable impacts of Ci-vermicompost and different ratios of organic fertilizer on soil fertility and plant height (28.8%) as major outcomes. In addition, vermicompost substantially increased soil total nitrogen (60.5%), soil organic matter (60.9%) including dissolved organic carbon (52.2%), and shoot biomass (V4, three-fold increase) compared with NPK and CK. Overall, the findings of this study suggest that vermicomposting combined with wetland plants is a feasible method for organic amendments and offers an innovative approach for recycling ecological waste to produce nutrient-rich organic fertilizers, reduce environmental damage, and improve crop production.
Assuntos
Solo , Zingiberales , Agricultura/métodos , Animais , China , Fertilizantes , Esterco , Nitrogênio , Plantas , Solo/química , Suínos , Zea maysRESUMO
The remediation of legacy metal(loid) contaminated soils in-situ relies on the addition of [organic] amendments to reduce the mobility and bioavailability of metal(loid)s, improve soil geochemical parameters and restore vegetation growth. Two vermicomposts of food and animal manure waste origin (V1 and V2) were amended to an arsenic (As) and copper (Cu) contaminated mine soil (≤1500 mg kg-1). Leaching columns and pot experiments evaluated copper and arsenic in soil pore waters, as well as pH, dissolved organic carbon (DOC) and phosphate (PO43-) concentrations. The uptake of As and Cu to ryegrass was also measured via the pot experiment, whilst recovered biochars from the column leaching test were measured for metal sorption at the termination of leaching. Vermicompost amendment to soil facilitated ryegrass growth which was entirely absent from the untreated soil in the pot test. All amendment combinations raised pore water pH by â¼4 units. Copper concentrations in pore waters from columns and pots showed steep reductions (â¼1 mg L-1), as a result of V1 & V2 compared to untreated soil (â¼500 mg L-1). Combined with an increase in DOC and PO43-, As was mobilised an order of magnitude by V1. Biochar furthest reduced Cu in pore waters from the columns to <0.1 mg L-1, as a result of surface sorption. The results of this study indicate that biochar can restrict the mobility of Cu from a contaminated mine soil after other amendment interventions have been used to promote revegetation. However, the case of As, biochar cannot counter the profound impact of vermicompost on arsenic mobility.