Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(8): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896363

RESUMO

Virotherapy treatment is a new and promising target therapy that selectively attacks cancer cells without harming normal cells. Mathematical models of oncolytic viruses have shown predator-prey like oscillatory patterns as result of an underlying Hopf bifurcation. In a spatial context, these oscillations can lead to different spatio-temporal phenomena such as hollow-ring patterns, target patterns, and dispersed patterns. In this paper we continue the systematic analysis of these spatial oscillations and discuss their relevance in the clinical context. We consider a bifurcation analysis of a spatially explicit reaction-diffusion model to find the above mentioned spatio-temporal virus infection patterns. The desired pattern for tumor eradication is the hollow ring pattern and we find exact conditions for its occurrence. Moreover, we derive the minimal speed of travelling invasion waves for the cancer and for the oncolytic virus. Our numerical simulations in 2-D reveal complex spatial interactions of the virus infection and a new phenomenon of a periodic peak splitting. An effect that we cannot explain with our current methods.


Assuntos
Simulação por Computador , Conceitos Matemáticos , Modelos Biológicos , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Humanos , Neoplasias/terapia , Neoplasias/virologia
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256071

RESUMO

Patients with COVID-19 have been reported to experience neurological complications, although the main cause of death in these patients was determined to be lung damage. Notably, SARS-CoV-2-induced pathological injuries in brains with a viral presence were also found in all fatal animal cases. Thus, an appropriate animal model that mimics severe infections in the lungs and brain needs to be developed. In this paper, we compared SARS-CoV-2 infection dynamics and pathological injuries between C57BL/6Smoc-Ace2em3(hACE2-flag-Wpre-pA)Smoc transgenic hACE2-C57 mice and Syrian hamsters. Importantly, the greatest viral distribution in mice occurred in the cerebral cortex neuron area, where pathological injuries and cell death were observed. In contrast, in hamsters, viral replication and distribution occurred mainly in the lungs but not in the cerebrum, although obvious ACE2 expression was validated in the cerebrum. Consistent with the spread of the virus, significant increases in IL-1ß and IFN-γ were observed in the lungs of both animals. However, in hACE2-C57 mice, the cerebrum showed noticeable increases in IL-1ß but only mild increases in IFN-γ. Notably, our findings revealed that both the cerebrum and the lungs were prominent infection sites in hACE2 mice infected with SARS-CoV-2 with obvious pathological damage. Furthermore, hamsters exhibited severe interstitial pneumonia from 3 dpi to 5 dpi, followed by gradual recovery. Conversely, all the hACE2-C57 mice experienced severe pathological injuries in the cerebrum and lungs, leading to mortality before 5 dpi. According to these results, transgenic hACE2-C57 mice may be valuable for studying SARS-CoV-2 pathogenesis and clearance in the cerebrum. Additionally, a hamster model could serve as a crucial resource for exploring the mechanisms of recovery from infection at different dosage levels.


Assuntos
COVID-19 , Cérebro , Humanos , Cricetinae , Camundongos , Animais , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Camundongos Transgênicos , Interleucina-1beta , Mesocricetus , Pulmão
3.
Virol J ; 18(1): 237, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844617

RESUMO

BACKGROUND: The highly pathogenic Influenza H7N9 virus is believed to cause multiple organ infections. However, there have been few systematic animal experiments demonstrating the virus distribution after H7N9 virus infection. The present study was carried out to investigate the viral distribution and pathological changes in the main organs of mice after experimental infection with highly pathogenic H7N9 virus. METHODS: Infection of mice with A/Guangdong/GZ8H002/2017(H7N9) virus was achieved via nasal inoculation. Mice were killed at 2, 3, and 7 days post infection. The other mice were used to observe their illness status and weight changes. Reverse transcription polymerase chain reaction and viral isolation were used to analyse the characteristics of viral invasion. The pathological changes of the main organs were observed using haematoxylin and eosin staining and immunohistochemistry. RESULTS: The weight of H7N9 virus-infected mice increased slightly in the first two days. However, the weight of the mice decreased sharply in the following days, by up to 20%. All the mice had died by the 8th day post infection and showed multiple organ injury. The emergence of viremia in mice was synchronous with lung infection. On the third day post infection, except in the brain, the virus could be isolated from all organs (lung, heart, kidney, liver, and spleen). On the seventh day post infection, the virus could be detected in all six organs. Brain infection was detected in all mice, and the viral titre in the heart, kidney, and spleen infection was high. CONCLUSION: Acute diffuse lung injury was the initial pathogenesis in highly pathogenic H7N9 virus infection. In addition to lung infection and viremia, the highly pathogenic H7N9 virus could cause multiple organ infection and injury.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C
4.
J Theor Biol ; 527: 110816, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34161792

RESUMO

We study the influence of spatial heterogeneity on the antiviral activity of mouse embryonic fibroblasts (MEF) infected with influenza A. MEF of type Ube1L-/- are composed of two distinct sub-populations, the strong type that sustains a strong viral infection and the weak type, sustaining a weak viral load. We present new data on the virus load infection of Ube1L-/-, which have been micro-printed in a checker board pattern of different sizes of the inner squares. Surprisingly, the total viral load at one day after inoculation significantly depends on the sizes of the inner squares. We explain this observation by using a reaction diffusion model and we show that mathematical homogenization can explain the observed inhomogeneities. If the individual patches are large, then the growth rate and the carrying capacity will be the arithmetic means of the patches. For finer and finer patches the average growth rate is still the arithmetic mean, however, the carrying capacity uses the harmonic mean. While fitting the PDE to the experimental data, we also predict that a discrepancy in virus load would be unobservable after only half a day. Furthermore, we predict the viral load in different inner squares that had not been measured in our experiment and the travelling distance the virions can reach after one day.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Antivirais/uso terapêutico , Fibroblastos , Humanos , Influenza Humana/tratamento farmacológico , Camundongos , Carga Viral
5.
Vet Pathol ; 56(1): 106-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235986

RESUMO

Neurotropism is a striking characteristic of bornaviruses, including parrot bornavirus 2 (PaBV-2). Our study evaluated the distribution of inflammatory foci and viral nucleoprotein (N) antigen in the brain and spinal cord of 27 cockatiels ( Nymphicus hollandicus) following experimental infection with PaBV-2 by injection into the pectoral muscle. Tissue samples were taken at 12 timepoints between 5 and 114 days post-inoculation (dpi). Each experimental group had approximately 3 cockatiels per group and usually 1 negative control. Immunolabeling was first observed within the ventral horns of the thoracic spinal cord at 20 dpi and in the brain (thalamic nuclei and hindbrain) at 25 dpi. Both inflammation and viral antigen were restricted to the central core of the brain until 40 dpi. The virus then spread quickly at 60 dpi to both gray and white matter of all analyzed sections of the central nervous system (CNS). Encephalitis was most severe in the thalamus and hindbrain, while myelitis was most prominent in the gray matter and equally distributed in the cervical, thoracic, and lumbosacral spinal cord. Our results demonstrate a caudal to rostral spread of virus in the CNS following experimental inoculation of PABV-2 into the pectoral muscle, with the presence of viral antigen and inflammatory lesions first in the spinal cord and progressing to the brain.


Assuntos
Doenças das Aves/virologia , Bornaviridae/patogenicidade , Doenças do Sistema Nervoso Central/veterinária , Cacatuas , Inflamação/veterinária , Infecções por Mononegavirales/veterinária , Animais , Antígenos Virais , Doenças das Aves/patologia , Encéfalo/patologia , Encéfalo/virologia , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/virologia , Inflamação/patologia , Inflamação/virologia , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/virologia , Medula Espinal/patologia , Medula Espinal/virologia
6.
Viruses ; 16(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39205181

RESUMO

Bats are natural hosts of a wide variety of viruses, including adenoviruses. European bats are known to carry mastadenoviruses categorized as species B (widespread in European Vespertilionidae bats) and whose taxonomy has not been clarified. We examined fecal samples from Vespertilionidae bats (five species) captured in central Russia and found that 2/12 (16%) were positive for mastadenoviruses. The partial genome of the mastadenovirus was assembled from Pipistrellus nathusii, representing the bat adenovirus species B. The complete genome (37,915 nt) of a novel mastadenovirus was assembled from Nyctalus noctula and named BatAdV/MOW15-Nn19/Quixote. Comparative studies showed significant divergence of the Quixote genome sequence from European bat mastadenoviruses, while the only known virus showing low similarity was the isolate WA3301 from an Australian bat, and together they formed a subclade that separated from other BatAdVs. Phylogenetic and comparative analysis of the protein-coding genes provided evidence that Quixote is related to a novel species within the genus Mastadenovirus, provisionally named "K" (as the next available letter for the species). Phylogenetic analyses revealed that some earlier viruses from Western European bats, for which only partial DNA polymerase genes are known, are most likely members of the tentatively named species "K". Thus, at least two species of mastadenovirus are circulating in bats throughout Europe, from western to eastern areas.


Assuntos
Infecções por Adenoviridae , Quirópteros , Genoma Viral , Mastadenovirus , Filogenia , Animais , Quirópteros/virologia , Mastadenovirus/genética , Mastadenovirus/classificação , Mastadenovirus/isolamento & purificação , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Europa (Continente) , Fezes/virologia , Federação Russa , Evolução Molecular
7.
Vet Rec ; 192(6): e2588, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719283

RESUMO

BACKGROUND: Nidoviruses are increasingly detected in various snake species worldwide, but much remains to be learned about their distribution and the factors influencing their epidemiology. METHODS: This retrospective study evaluated the results of routine nidovirus testing, by PCR, of 5210 swab samples from pet snakes from various European countries that were submitted to a commercial veterinary laboratory in Germany between 2016 and 2021. RESULTS: The overall detection rate was 19.96%. However, the detection rate varied significantly depending on the snake species (p < 0.0001), with the highest rate in Indian pythons (Python molurus) (42.24%). Rates also varied depending on the season of sample collection (p < 0.0001), with the highest rate in winter (24.46%), and the country of sample origin (p < 0.0001), with the highest rate in Austria (36.69%). The detection rate also decreased significantly (p = 0.0003) over the 6-year observation period, from 26.43% to 17.64%. LIMITATION: No information on clinical signs was available for most of the sampled snakes. CONCLUSION: The present study supplies new information on the distribution of python nidoviruses (subgenus Roypretovirus) in pet snakes in Europe and indicates a dynamic situation with possible changes in prevalence over time.


Assuntos
Boidae , Nidovirales , Animais , Nidovirales/genética , Estudos Retrospectivos , Serpentes , Europa (Continente)/epidemiologia , Reação em Cadeia da Polimerase/veterinária
8.
Vet World ; 15(6): 1467-1480, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35993083

RESUMO

Background and Aim: Newcastle disease (ND) is a viral infectious disease that affects commercial and native chickens, resulting in economic losses to the poultry industry. This study aimed to examine the viral strains circulating in commercial and native chickens by genetic characterization and observe the distribution of Newcastle disease virus (NDV) in chicken embryonic tissue. Materials and Methods: ND was detected using a quantitative reverse transcription-polymerase chain reaction. Genetic characterization of the fusion (F) and hemagglutinin-neuraminidase (HN) genes from the eight NDVs was performed using specific primers. The sequence was compared with that of other NDVs from GenBank and analyzed using the MEGA-X software. The distribution of NDV in chicken embryos was analyzed based on lesions and the immunopositivity in immunohistochemistry staining. Results: Based on F gene characterization, velogenic NDV strains circulating in commercial and native chickens that showed varying clinical symptoms belonged to genotype VII.2. Lentogenic strains found in chickens without clinical symptoms were grouped into genotype II (unvaccinated native chickens) and genotype I (vaccinated commercial chickens). Amino acid variations in the HN gene, namely, the neutralization epitope and antigenic sites at positions 263 and 494, respectively, occurred in lentogenic strains. The NDV reaches the digestive and respiratory organs, but in lentogenic NDV does not cause significant damage, and hence embryo death does not occur. Conclusion: This study showed that velogenic and lentogenic NDV strains circulated in both commercial and native chickens with varying genotypes. The virus was distributed in almost all organs, especially digestive and respiratory. Organ damage in lentogenic infection is not as severe as in velogenic NDV. Further research is needed to observe the distribution of NDV with varying pathogenicity in chickens.

9.
Microbiol Spectr ; 10(5): e0226322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069561

RESUMO

We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Interleucina-17 , Eliminação de Partículas Virais , Virulência , Vacinas contra COVID-19 , Fator de Necrose Tumoral alfa , Macaca mulatta , Interferon gama , Modelos Animais de Doenças
10.
Forensic Sci Int ; 339: 111419, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994987

RESUMO

Respiratory viruses can cause fatal systemic infections; therefore, post-mortem diagnosis is essential in forensic autopsy cases. However, little is known regarding the distribution of respiratory viruses in the body. In this study, we investigated the anatomical distribution of respiratory viruses in 48 forensic autopsy cases suspected of viral infections at our institute. Fast Track Diagnostics (FTD) Respiratory Pathogens 21 was used as a screening test for 20 respiratory viruses in nasopharyngeal swabs. In cases with positive results for virus detection by the screening test, the detected viruses were quantified in body fluid and organ specimens by virus-specific real-time reverse transcription polymerase chain reaction (RT-PCR) and digital PCR. Viruses were detected in 33 cases, with the viral distribution and load differing among the cases. Since various respiratory viruses were detected from the nasopharyngeal swab and its viral load was higher than those of other body fluid specimens, the nasopharyngeal swab was suggested as a useful specimen for the post-mortem detection of respiratory viruses. Viruses were detected in almost all specimens including the serum in six cases. Considering the viral distribution in the body, pathological findings, and ante-mortem symptoms, these cases were presumed to be systemically infected, having died in the acute infection phase. In conclusion, the anatomical distribution of respiratory viruses can help indicate ante-mortem systemic conditions and the cause of death.


Assuntos
Infecções Respiratórias , Viroses , Vírus , Autopsia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/diagnóstico , Viroses/diagnóstico , Vírus/genética
11.
Res Vet Sci ; 141: 156-163, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749100

RESUMO

Duck hepatitis A virus type 1 (DHAV-1) infection is the main cause of duck viral hepatitis, but the replication process and distribution of DHAV-1 in vivo are still poorly understood. In this study, six-day-old ducklings were infected by two different methods: by intramuscular injection to establish DHAV-1 infection animal models and by the combined administration of virus solution orally, through nasal inhalation, through inoculation of the eye, and through intrarectal contact to simulate natural infection. Tissues were collected at different time points and quantitative real-time polymerase chain reaction (qPCR) was employed to analyze the gene expression levels of DHAV-1 in different tissues. The results showed that the viral gene levels responded to the different challenge methods. Viral gene expression levels in all tissues in the intramuscular injection group were lower than those in the group that simulated natural infection. In both groups, the liver was the primary tissue that responsible for the replication of DHAV-1 genes, as virus gene level peaked at 4 h post infection (hpi). In addition, the respiratory and digestive tracts were important regions for DHAV-1 infection as high viral gene levels were detected at early (8 hpi) and late (96 hpi) stages of infection. This research utilized a novel infection method to simulate natural infection and analyzed the DHAV-1 distribution in different tissues. The findings can provide guidance for making prevention and control measures.


Assuntos
Vírus da Hepatite do Pato , Hepatite Viral Animal , Infecções por Picornaviridae , Doenças das Aves Domésticas , Animais , Patos , Infecções por Picornaviridae/veterinária
12.
Transbound Emerg Dis ; 67(4): 1654-1659, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32009303

RESUMO

African swine fever (ASF) is one of the most important and complex viral diseases in domestic pigs and wild boar. Over the last decade, the disease has spread to several European and Asian countries and is now one of the major threats to profitable pig production worldwide. One of the more recently affected western countries is Belgium. To date, only wild boar are affected in a rather defined area in the Luxembourg region close to France, Luxembourg and Germany. While detailed sequence analyses were recently performed, biological characterization was still pending. Here, we report on the experimental inoculation of four sub-adult wild boar to further characterize the virus and its distribution in different tissues. After oronasal inoculation with the virus strain 'Belgium 2018/1', all animals developed an acute and severe disease course with typical pathomorphological and histopathological lesions. Organs and blood samples were positive in qPCR, haemadsorption test and antigen lateral flow devices (LFD). Virus and viral genome were also detected in genitals and accessory sex glands of two boars. There were no antibodies detectable in commercial antibody ELISAs, antibody LFDs and indirect immunoperoxidase tests. Thus, the genotype II ASF virus isolate 'Belgium 2018/1' showed a highly virulent phenotype in European wild boar similar to parental viruses like Armenia 2007 and other previously characterized ASFV strains. The study also provided a large set of well-characterized sample materials for test validation and assay harmonization.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Sus scrofa/virologia , Doenças dos Suínos/virologia , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Bélgica , Ensaio de Imunoadsorção Enzimática/veterinária , Genoma Viral , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Doenças dos Suínos/patologia , Virulência/fisiologia
13.
Oncotarget ; 8(5): 7336-7349, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28038465

RESUMO

Hepatitis A virus is one of five types of hepatotropic viruses that cause human liver disease. A similar liver disease is also identified in ducks caused by Duck Hepatitis A virus (DHAV). Notably, many types of hepatotropic viruses can be detected in urine. However, how those viruses enter into the urine is largely unexplored. To elucidate the potential mechanism, we used the avian hepatotropic virus to investigate replication strategies and immune responses in kidney until 280 days after infection. Immunohistochemistry and qPCR were used to detect viral distribution and copies in the kidney. Double staining of CD4+ or CD8+ T cells and virus and qPCR were used to investigate T cell immune responses and expression levels of cytokines. Histopathology was detected by standard HE staining. In this study, viruses were persistently located at scattered renal tubules. No CD4+ or CD8+ T cells were recruited to the kidney, which was only accompanied by transient cytokine storms. In conclusion, the extremely scattered infection was the viral strategy to escape host immunity and may persistently shed virus into urine. The deletion of Th or Tc cell responses and transient cytokine storms indeed provide an advantageous renal environment for their persistent survival.


Assuntos
Injúria Renal Aguda/virologia , Evasão da Resposta Imune , Rim/virologia , Infecções por Picornaviridae/virologia , Picornaviridae/imunologia , Eliminação de Partículas Virais , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/urina , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citocinas/metabolismo , Patos , Vírus da Hepatite do Pato , Rim/crescimento & desenvolvimento , Rim/imunologia , Picornaviridae/patogenicidade , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/urina , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Fatores de Tempo , Virulência , Replicação Viral
14.
Front Microbiol ; 7: 166, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925041

RESUMO

Geese, as aquatic birds, are an important natural reservoir of avian influenza virus (AIV). To characterize the innate antiviral immune response against AIV H9N2 strain infection in geese as well as the probable relationship between the expression of immune-related genes and the distribution of viral antigens, we investigated the levels of immune-related gene transcription both in AIV H9N2 strain-infected geese and in vitro. The patterns of viral location and the tissue distribution of CD4- and CD8α-positive cells were concurrently detected by immunohistochemical staining, which revealed respiratory and digestive organs as the primary sites of antigen-positive signals. Average AIV H9N2 viral loads were detected in the feces, Harderian gland (HG), and trachea, where higher copy numbers were detected compared with the rectum. Our results suggested the strong induction of proinflammatory cytokine expression compared with interferons (IFNs). Notably, in most tissues from the AIV H9N2 strain-infected birds, IFNα and IFNγ gene transcripts were differentially expressed. However, inverse changes in IFNα and IFNγ expression after AIV H9N2 strain infection were observed in vitro. Taken together, the results suggest that AIV H9N2 is widely distributed in multiple tissues, efficiently induces inflammatory cytokines in the HG and spleen of goslings and inversely influences type I and II IFN expression both in vivo and in vitro. The findings of this study further our understanding of host defense mechanisms and the pathogenesis of the H9N2 influenza virus in geese.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA