RESUMO
Irritable bowel syndrome (IBS) is a chronic gastrointestinal condition associated with altered bowel habits and recurrent abdominal pain, often triggered by food intake. Current treatments focus on improving stool pattern, but effective treatments for pain in IBS are still lacking due to our limited understanding of pathophysiological mechanisms. Visceral hypersensitivity (VHS), or abnormal visceral pain perception, underlies abdominal pain development in IBS, and mast cell activation has been shown to play an important role in the development of VHS. Our work recently revealed that abdominal pain in response to food intake is induced by the sensitization of colonic pain-sensing neurons by histamine produced by activated mast cells following a local IgE response to food. In this review, we summarize the current knowledge on abdominal pain and VHS pathophysiology in IBS, we outline the work leading to the discovery of the role of histamine in abdominal pain, and we introduce antihistamines as a novel treatment option to manage chronic abdominal pain in patients with IBS.
Assuntos
Dor Abdominal , Histamina , Síndrome do Intestino Irritável , Mastócitos , Dor Visceral , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/terapia , Humanos , Animais , Histamina/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Dor Abdominal/etiologia , Dor Abdominal/imunologia , Dor Visceral/etiologia , Dor Visceral/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Hipersensibilidade Alimentar/imunologia , AlimentosRESUMO
OBJECTIVE: We evaluated the histamine 1 receptor antagonist ebastine as a potential treatment for patients with non-constipated irritable bowel syndrome (IBS) in a randomised, placebo-controlled phase 2 study. METHODS: Non-constipated patients with IBS fulfilling the Rome III criteria were randomly assigned to 20 mg ebastine or placebo for 12 weeks. Subjects scored global relief of symptoms (GRS) and abdominal pain intensity (API). A subject was considered a weekly responder for GRS if total or obvious relief was reported and a responder for API if the weekly average pain score was reduced by at least 30% vs baseline. The primary endpoints were the proportion of subjects who were weekly responders for at least 6 out of the 12 treatment weeks for both GRS and API ('GRS+API', composite endpoint) and for GRS and API separately. RESULTS: 202 participants (32±11 years, 68% female) were randomly allocated to receive ebastine (n=101) or placebo (n=101). Treatment with ebastine resulted in significantly more responders (12%, 12/92) for GRS+API compared with placebo (4%, 4/87, p=0.047) while the proportion of responders for GRS and API separately was higher for ebastine compared with placebo, although not statistically significant (placebo vs ebastine, GRS: 7% (6/87) vs 15% (14/91), p=0.072; API: 25% (20/85) vs 37% (34/92), p=0.081). CONCLUSIONS: Our study shows that ebastine is superior to placebo and should be further evaluated as novel treatment for patients with non-constipated IBS. TRIAL REGISTRATION NUMBER: The study protocol was approved by the local ethics committee of each study site (EudraCT number: 2013-001199-39; ClinicalTrials.gov identifier: NCT01908465).
Assuntos
Síndrome do Intestino Irritável , Piperidinas , Humanos , Feminino , Masculino , Síndrome do Intestino Irritável/terapia , Histamina/uso terapêutico , Resultado do Tratamento , Butirofenonas/efeitos adversos , Método Duplo-Cego , Dor Abdominal/tratamento farmacológicoRESUMO
Acute gastrointestinal (GI) inflammation induces neuroplasticity that produces long-lasting changes in gut motor function and pain. The endocannabinoid system is an attractive target to correct pain and dysmotility, but how inflammation changes endocannabinoid control over cellular communication in enteric neurocircuits is not understood. Enteric glia modulate gut neurons that control motility and pain and express monoacylglycerol lipase (MAGL) which controls endocannabinoid availability. We used a combination of in situ calcium imaging, chemogenetics, and selective drugs to study how endocannabinoid mechanisms affect glial responses and subsequent enteric neuron activity in health and following colitis in Wnt1Cre;GCaMP5g-tdT;GFAP::hM3Dq mice. Trpv1Cre;GCaMP5gtdT mice were used to study nociceptor sensitivity and Sox10CreERT2;Mgllf/f mice were used to test the role of glial MAGL in visceral pain. The data show that endocannabinoid signaling regulates neuro-glial signaling in gut neurocircuits in a sexually dimorphic manner. Inhibiting MAGL in healthy samples decreased glial responsiveness but this effect was lost in females following colitis and converted to an excitatory effect in males. Manipulating CB1 and CB2 receptors revealed further sex differences amongst neuro-glia signaling that were impacted following inflammation. Inflammation increased gut nociceptor sensitivity in both sexes but only females exhibited visceral hypersensitivity in vivo. Blocking MAGL normalized nociceptor responses in vitro and deleting glial Mgll in vivo rescued visceral hypersensitivity in females. These results show that sex and inflammation impact endocannabinoid mechanisms that regulate intercellular enteric glia-neuron communication. Further, targeting glial MAGL could provide therapeutic benefits for visceral nociception in a sex-dependent manner.
RESUMO
Irritable bowel syndrome (IBS), which is characterized by chronic abdominal pain, has a high global prevalence. The anterior cingulate cortex (ACC), which is a pivotal region involved in pain processing, should be further investigated regarding its role in the regulation of visceral sensitivity and mental disorders. A C57BL/6J mouse model for IBS was established using chronic acute combining stress (CACS). IBS-like symptoms were assessed using behavioral tests, intestinal motility measurements, and abdominal withdrawal reflex scores. Fluoro-Gold retrograde tracing and immunohistochemistry techniques were employed to investigate the projection of ACC gamma-aminobutyric acid-producing (GABAergic) neurons to the lateral hypothalamus area (LHA). Chemogenetic approaches enabled the selective activation or inhibition of the ACC-LHA GABAergic pathway. Enzyme-linked immunosorbent assay (ELISA) and western blot analyses were conducted to determine the expression of histamine, 5-hydroxytryptamine (5-HT), and transient receptor potential vanilloid 4 (TRPV4). Our findings suggest that CACS induced IBS-like symptoms in mice. The GABA type A receptors (GABAAR) within LHA played a regulatory role in modulating IBS-like symptoms. The chemogenetic activation of ACC-LHA GABAergic neurons elicited anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in normal mice; however, these effects were effectively reversed by the administration of the GABAAR antagonist Bicuculline. Conversely, the chemogenetic inhibition of ACC-LHA GABAergic neurons alleviated anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in the mouse model for IBS. These results highlight the crucial involvement of the ACC-LHA GABAergic pathway in modulating anxiety-like behaviors, intestinal motility alterations, and visceral hypersensitivity, suggesting a potential therapeutic strategy for alleviating IBS-like symptoms.
Assuntos
Neurônios GABAérgicos , Giro do Cíngulo , Região Hipotalâmica Lateral , Síndrome do Intestino Irritável , Camundongos Endogâmicos C57BL , Animais , Síndrome do Intestino Irritável/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Camundongos , Masculino , Região Hipotalâmica Lateral/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Vias Neurais/metabolismo , Canais de Cátion TRPV/metabolismo , Estresse Psicológico/metabolismoRESUMO
Ulcerative colitis (UC) is linked with inflammation of the large intestine due to an overactive response of the colon-immune system. UC is associated with weight loss, rectal bleeding, diarrhea, and abdominal pain. Given that γ-amino butyric acid (GABA) suppresses immune cell activity and the excitability of colonic afferents, and that there is a decrease in colonic GABA during UC, we hypothesized that UC pain is due to a decrease in the inhibition of colonic afferents. Thus, restoring GABA in the colon will attenuate inflammatory hypersensitivity. We tested this hypothesis in a mouse model of colitis. Colon inflammation was induced with seven days of dextran sodium sulfate (DSS, 3%) in the drinking water. GABA (40 mg/kg) was administered orally for the same period as DSS, and body weight, colon length, colon permeability, clinical progression of colitis (disease activity index or DAI), and colon histological score (HS) were assessed to determine the effects of GABA on colitis. A day after the end of GABA treatment, visceral sensitivity was assessed with balloon distention (of the colon)-evoked visceromotor response and colon samples were collected for the measurement of GABA and cytokines. Treatment with GABA reduced the DSS-induced increase in the colon permeability, DAI, HS, and decrease in body weight and colon length. Furthermore, GABA inhibited the DSS-induced increase in the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-12 (IL-12), and increased the expression of the anti-inflammatory cytokine IL-10 in the colon tissue. Importantly, GABA reduced DSS-induced visceral hypersensitivity. These data suggest that increasing gastrointestinal levels of GABA may be useful for the treatment of colitis.NEW & NOTEWORTHY GABA treatment reduces the severity of colitis and inflammation and produces inhibition of visceral hypersensitivity in colon-inflamed mice. These results raise the promising possibility that GABA treatment may be an effective therapeutic strategy for the management of symptoms associated with colitis. However, clinical studies are required to corroborate whether this mouse-model data translates to human colon.
Assuntos
Colite Ulcerativa , Colite , Humanos , Animais , Camundongos , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Peso Corporal , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BLRESUMO
The pathogenesis of irritable bowel syndrome (IBS) is multifactorial, characterized in part by increased intestinal permeability, and visceral hypersensitivity. Increased permeability is associated with IBS severity and abdominal pain. Tenapanor is FDA-approved for the treatment of IBS with constipation (IBS-C) and has demonstrated improvements in bowel motility and a reduction in IBS-related pain; however, the mechanism by which tenapanor mediates these functions remains unclear. Here, the effects of tenapanor on colonic pain signaling and intestinal permeability were assessed through behavioral, electrophysiological, and cell culture experiments. Intestinal motility studies in rats and humans demonstrated that tenapanor increased luminal sodium and water retention and gastrointestinal transit versus placebo. A significantly reduced visceral motor reflex (VMR) to colonic distension was observed with tenapanor treatment versus vehicle in two rat models of visceral hypersensitivity (neonatal acetic acid sensitization and partial restraint stress; both P < 0.05), returning VMR responses to that of nonsensitized controls. Whole cell voltage patch-clamp recordings of retrogradely labeled colonic dorsal root ganglia (DRG) neurons from sensitized rats found that tenapanor significantly reduced DRG neuron hyperexcitability to capsaicin versus vehicle (P < 0.05), an effect not mediated by epithelial cell secretions. Tenapanor also attenuated increases in intestinal permeability in human colon monolayer cultures caused by incubation with proinflammatory cytokines (P < 0.001) or fecal supernatants from patients with IBS-C (P < 0.005). These results support a model in which tenapanor reduces IBS-related pain by strengthening the intestinal barrier, thereby decreasing permeability to macromolecules and antigens and reducing DRG-mediated pain signaling.NEW & NOTEWORTHY A series of nonclinical experiments support the theory that tenapanor inhibits IBS-C-related pain by strengthening the intestinal barrier. Tenapanor treatment reduced visceral motor responses to nonsensitized levels in two rat models of hypersensitivity and reduced responses to capsaicin in sensitized colonic nociceptive dorsal root ganglia neurons. Intestinal permeability experiments in human colon monolayer cultures found that tenapanor attenuates increases in permeability induced by either inflammatory cytokines or fecal supernatants from patients with IBS-C.
Assuntos
Síndrome do Intestino Irritável , Isoquinolinas , Sulfonamidas , Humanos , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Colo/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Função da Barreira Intestinal , Capsaicina/farmacologia , Células Receptoras Sensoriais/metabolismo , Dor Abdominal/metabolismo , Citocinas/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
BACKGROUND & AIMS: The etiology of abdominal pain in postinfectious, diarrhea-predominant irritable bowel syndrome (PI-IBS-D) is unknown, and few treatment options exist. Catechol-O-methyltransferase (COMT), an enzyme that inactivates and degrades biologically active catecholamines, plays an important role in numerous physiologic processes, including modulation of pain perception. Our objective was to determine the mechanism(s) of how decreased colonic COMT in PI-IBS-D patients contributes to the chronic abdominal pain phenotype after enteric infections. METHODS: Colon neurons, epithelial cells, and macrophages were procured with laser capture microdissection from PI-IBS-D patients to evaluate cell-specific colonic COMT, microRNA-155 (miR-155), and tumor necrosis factor (TNF) α expression levels compared to recovered patients (infection cleared: did not develop PI-IBS-D) and control individuals. COMT-/-, colon-specific COMT-/-, and miR-155-/- mice and human colonoids were used to model phenotypic expression of COMT in PI-IBS-D patients and to investigate signaling pathways linking abdominal pain. Citrobacter rodentium and trinitrobenzene sulfonic acid animal models were used to model postinflammatory changes seen in PI-IBS-D patients. RESULTS: Colonic COMT levels were significantly decreased and correlated with increased visual analog scale abdominal pain ratings in PI-IBS-D patients compared to recovered patients and control individuals. Colonic miR-155 and TNF-α were increased in PI-IBS-D patients with diminished colonic COMT. COMT-/- mice had significantly increased expression of miR-155 and TNF-α in both colon tissues and dorsal root ganglia. Introduction of cV1q antibody (anti-TNF-α) into mice reversed visceral hypersensitivity after C rodentium and trinitrobenzene sulfonic acid. CONCLUSIONS: Decreased colonic COMT in PI-IBS-D patients drives abdominal pain phenotypes via the COMT/miR-155/TNF-α axis. These important findings will allow new treatment paradigms and more targeted and personalized medicine approaches for gastrointestinal disorders after enteric infections.
Assuntos
Síndrome do Intestino Irritável , MicroRNAs , Humanos , Camundongos , Animais , Síndrome do Intestino Irritável/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Nociceptividade , Inibidores do Fator de Necrose Tumoral , Colo/metabolismo , Dor Abdominal/genética , Dor Abdominal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Trinitrobenzenos/metabolismo , Ácidos Sulfônicos/metabolismoRESUMO
Accumulating evidences suggest dysfunctions in the hippocampus are associated with chronic pain. Nevertheless, the role of hippocampal circuitry in pain memories and emotional responses is not yet fully understood. In this study, we utilized a comprehensive approach that combined electromyography (EMG), photochemical genetic techniques, and anxiety-related behavioral paradigms to investigate the involvement of dorsal hippocampus (DH) and ventral hippocampus (VH) in visceral sensitivity and anxiety behaviors in male rats. Our results demonstrated that IBS-like rats exhibited comorbid visceral hypersensitivity and anxiety, along with the number of activated neurons in the VH was higher than that in the DH. Manipulation of glutamatergic neurons in the hippocampus was identified as a crucial mechanism underlying the mediation of both visceral sensitivity and anxiety behaviors. Specifically, optogenetic activation of the DH induced both visceral hypersensitivity and anxiety, while activation of the VH induced anxiety but did not affect visceral sensitivity. Conversely, chemogenetic inhibition of the DH reduced both visceral hypersensitivity and anxiety, whereas inhibition of the VH alleviated anxiety but did not alleviate visceral hypersensitivity in IBS-like rats. Our study highlights the important role of early life stress in inducing visceral hypersensitivity and anxiety, and further elucidates the distinct functional contributions of the DH and VH to these behavioral changes. These findings provide a theoretical basis for the diagnosis and treatment of IBS, and suggest that targeting specific hippocampal neuron subtypes may represent a promising therapeutic approach.
Assuntos
Dor Crônica , Síndrome do Intestino Irritável , Masculino , Animais , Ratos , Ansiedade , Transtornos de Ansiedade , HipocampoRESUMO
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by its main symptom, visceral hypersensitivity (VH), which is aggravated by stress. Gut-brain interactions and gut bacteria may alleviate IBS symptoms, including VH. γ-amino butyric acid (GABA), produced notably by lactic acid bacteria (LAB), shows promising result in IBS symptoms treatment. In bacteria, GABA is generated through glutamate decarboxylase (GAD) metabolism of L-glutamic acid, maintaining intracellular pH. In mammals, GABA acts as an inhibitory neurotransmitter, modulating pain, stress, and anxiety. Therefore, utilizing GABA-producing LAB as a therapeutic approach might be beneficial. Our previous work showed that a GABA-producing Lactococcus lactis strain, NCDO2118, reduced VH induced by acute stress in rats after a 10-day oral treatment. Here, we identified the strain CNCM I-5388, with a four-fold higher GABA production rate under the same conditions as NCDO2118. Both strains shared 99.1% identical GAD amino acid sequences and in vitro analyses revealed the same optimal pH for GAD activity; however, CNCM I-5388 exhibited 17 times higher intracellular GAD activity and increased resistance to acidic pH. Additionally, in vivo experiments have demonstrated that CNCM I-5388 has faster anti-VH properties in rats compared with NCDO2118, starting from the fifth day of treatment. Finally, CNCM I-5388 anti-VH effects partially persisted after 5-day treatment interruption and after a single oral treatment. These findings highlight CNCM I-5388 as a potential therapeutic agent for managing VH in IBS patients.
Assuntos
Síndrome do Intestino Irritável , Lactobacillales , Lactococcus lactis , Humanos , Ratos , Animais , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sequência de Aminoácidos , MamíferosRESUMO
Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y1R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y1R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y1R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y1R up-regulation by electroacupuncture. Our study suggests that the P2X7R â P2Y1R â P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.
RESUMO
OBJECTIVE: Sacral nerve stimulation (SNS) is emerging as a novel treatment for irritable bowel syndrome (IBS). However, its effects are limited, and the underlying mechanisms remain largely unknown. MATERIALS AND METHODS: In this study, rats were divided into three groups (n = 12 rats per group): 1) the SNS group; 2) the sham SNS group (the sham group for short); and 3) the control group. The SNS and sham groups were exposed to chronic and acute stress to establish an IBS model. Electrode implantation surgery was performed in rats with the IBS model. The SNS group received electrical stimulation for 30 minutes every day for seven days. Abdominal withdrawal reflex (AWR) was used to evaluate the effect of SNS on visceral sensitivity in diarrhea-predominant IBS (IBS-D) rats. The frequency domain of heart rate variability (HRV) was analyzed to assess the effect of SNS on regulating the autonomic function. The expression of transient receptor potential vanilloid 1 (TRPV1) in the colon, spinal cord, and hippocampus was detected by immunohistochemistry to explore the mechanism of SNS in IBS-D rats. RESULTS: Compared with the sham group, AWR scores were significantly decreased under different gas volumes of stimulation of 0.4, 0.6, and 0.8 ml for rectal distention in the SNS group (all p < 0.05). However, there was no significant difference <1.0 ml between the two groups (p > 0.05). Compared with the sham group, the frequency domain indexes of HRV were significantly altered. Normalized low-frequency power and low frequency-to-high frequency ratio were significantly decreased, and normalized high-frequency power was significantly increased in the SNS group (all p < 0.05). Moreover, the expression of TRPV1 in the spinal cord and colon in the SNS group was significantly decreased compared with the sham group (both p < 0.05). These results suggested that chronic SNS not only improved the visceral sensitivity and autonomic dysfunction but also decreased the expression of TRPV1 in the spinal cord-gut tissue in IBS-D rats. CONCLUSION: Chronic SNS was found to have an inhibitory effect on visceral hypersensitivity in IBS-D rats, providing experimental evidence for its potential clinical application in IBS.
Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/terapia , Ratos Sprague-Dawley , Medula Espinal , DiarreiaRESUMO
Functional abdominal pain is a disorder in which central and peripheral sensitization processes converge, leading to hypersensitivity and allodynia. Differential diagnosis is made with organic digestive, renal, gynecological, endocrine, or neurological diseases. Treatment should be individualized for each patient. In cases of debilitating pain, therapy combining drugs with different mechanisms of action can be initiated, while in less severe cases, therapy with a progressive introduction of drugs based on clinical response is advised. The first line includes general lifestyle advice and antispasmodic substances, like peppermint oil, anticholinergic/antimuscarinic, and calcium channels antagonists. In the second line of treatment, neuromodulating agents are added. Finally, when these measures fail, third-line treatments such as gabapentine and atypical antipsychotics are considered. Psychological interventions should be considered if specialized therapists are available to manage these disorders.
Assuntos
Dor Abdominal , Humanos , Dor Abdominal/diagnóstico , Dor Abdominal/tratamento farmacológico , Dor Abdominal/etiologia , Diagnóstico Diferencial , Parassimpatolíticos/uso terapêutico , Guias de Prática Clínica como AssuntoRESUMO
OBJECTIVES: Clinical studies revealed that early-life adverse events contribute to the development of IBS in adulthood. The aim of our study was to investigate the relationship between prenatal stress (PS), gut microbiota and visceral hypersensitivity with a focus on bacterial lipopeptides containing γ-aminobutyric acid (GABA). DESIGN: We developed a model of PS in mice and evaluated, in adult offspring, visceral hypersensitivity to colorectal distension (CRD), colon inflammation, barrier function and gut microbiota taxonomy. We quantified the production of lipopeptides containing GABA by mass spectrometry in a specific strain of bacteria decreased in PS, in PS mouse colons, and in faeces of patients with IBS and healthy volunteers (HVs). Finally, we assessed their effect on PS-induced visceral hypersensitivity. RESULTS: Prenatally stressed mice of both sexes presented visceral hypersensitivity, no overt colon inflammation or barrier dysfunction but a gut microbiota dysbiosis. The dysbiosis was distinguished by a decreased abundance of Ligilactobacillus murinus, in both sexes, inversely correlated with visceral hypersensitivity to CRD in mice. An isolate from this bacterial species produced several lipopeptides containing GABA including C14AsnGABA. Interestingly, intracolonic treatment with C14AsnGABA decreased the visceral sensitivity of PS mice to CRD. The concentration of C16LeuGABA, a lipopeptide which inhibited sensory neurons activation, was decreased in faeces of patients with IBS compared with HVs. CONCLUSION: PS impacts the gut microbiota composition and metabolic function in adulthood. The reduced capacity of the gut microbiota to produce GABA lipopeptides could be one of the mechanisms linking PS and visceral hypersensitivity in adulthood.
Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Masculino , Feminino , Camundongos , Animais , Síndrome do Intestino Irritável/microbiologia , Disbiose , Fezes/microbiologia , InflamaçãoRESUMO
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
RESUMO
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal
RESUMO
The serotonergic 5-HT1A receptors are implicated in the central mechanisms of visceral pain, but their role in these processes is controversial. Considering existing evidences for organic inflammation-triggered neuroplastic changes in the brain serotonergic circuitry, the ambiguous contribution of 5-HT1A receptors to supraspinal control of visceral pain in normal and post-inflammatory conditions can be assumed. In this study performed on male Wistar rats, we used microelectrode recording of the caudal ventrolateral medulla (CVLM) neuron responses to colorectal distension (CRD) and electromyography recording of CRD-evoked visceromotor reactions (VMRs) to evaluate post-colitis changes in the effects of 5-HT1A agonist buspirone on supraspinal visceral nociceptive transmission. In rats recovered from trinitrobenzene sulfonic acid colitis, the CRD-induced CVLM neuronal excitation and VMRs were increased compared with those in healthy animals, revealing post-inflammatory intestinal hypersensitivity. Intravenous buspirone (2 and 4 mg/kg) under urethane anesthesia dose-dependently suppressed CVLM excitatory neuron responses to noxious CRD in healthy rats, but caused dose-independent increase in the already enhanced nociceptive activation of CVLM neurons in post-colitis animals, losing also its normally occurring faciliatory effect on CRD-evoked inhibitory medullary neurotransmission and suppressive action on hemodynamic reactions to CRD. In line with this, subcutaneous injection of buspirone (2 mg/kg) in conscious rats, which attenuated CRD-induced VMRs in controls, further increased VMRs in hypersensitive animals. The data obtained indicate a shift from anti- to pronociceptive contribution of 5-HT1A-dependent mechanisms to supraspinal transmission of visceral nociception in intestinal hypersensitivity conditions, arguing for the disutility of buspirone and possibly other 5-HT1A agonists for relieving post-inflammatory abdominal pain.
Assuntos
Colite , Dor Visceral , Masculino , Ratos , Animais , Receptor 5-HT1A de Serotonina , Buspirona/farmacologia , Ratos Wistar , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Dor Visceral/tratamento farmacológico , Dor AbdominalRESUMO
Transient receptor potential vanilloid type 2 (TRPV2) and type 1 (TRPV1) are originally identified as heat-sensitive TRP channels. We compared the expression patterns of TRPV2 and TRPV1 in the rat distal colon and extrinsic primary afferent neurons, and investigated their roles in visceral hypersensitivity in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rats. Both TRPV2 and TRPV1 expressions in the colon, dorsal root ganglion (DRG), and nodose ganglion (NG) were significantly upregulated in the TNBS-induced colitis model. TRPV2 cell bodies co-localized with the intrinsic primary afferent marker NeuN and the inhibitory motor neuronal marker nNOS in the myenteric plexus. TRPV2 expressions were further detected in the resident macrophage marker ED2 in the mucosa. In contrast, no TRPV1-expressing cell bodies were detected in the myenteric plexus. Both TRPV2- and TRPV1-positive cell bodies in the DRG and NG were double-labeled with the neuronal retrograde tracer fluorescent fluorogold. Large- and medium-sized TRPV2-positive neurons were labeled with the A-fiber marker NF200, calcitonin gene-related peptide (CGRP), and substance P (SP) in the DRG while small-sized TRPV1-positive neurons were labeled with the C-fiber markers IB4, CGRP, and SP. TRPV2- and TRPV1-positive NG neurons were labeled with NF200 and IB4. TNBS treatment increased p-ERK1/2-positive cells in TRPV2 and TRPV1 neurons but did not affect the TRPV2 and TRPV1 subpopulations in the DRG and NG. Both TRPV2 and TRPV1 antagonists significantly alleviated visceral hypersensitivity in TNBS-induced colitis model rats. These findings suggest that intrinsic/extrinsic TRPV2- and extrinsic TRPV1-neurons contribute to visceral hypersensitivity in an experimental colitis model.
Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Colite , Ratos , Animais , Ácido Trinitrobenzenossulfônico/efeitos adversos , Peptídeo Relacionado com Gene de Calcitonina/efeitos adversos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/induzido quimicamente , Neurônios/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglios EspinaisRESUMO
Proton pump inhibitors (PPIs) are the mainstay of therapy for gastroesophageal reflux disease (GERD) but up to 60% of patients have inadequate response to therapy. Acid sensing ion channels (ASICs) play important roles in nociception. This study aimed to investigate whether the increased expression of ASICs results in neuronal hyperexcitability in GERD. Esophageal biopsies were taken from GERD patients and healthy subjects to compare expression of ASIC1 and 3. Next, gene and protein expression of ASIC1 and 3 from esophageal mucosa and dorsal root ganglia (DRG) neurons were measured by qPCR, Western-blot and immunofluorescence in rodent models of reflux esophagitis (RE), non-erosive reflux disease (NERD), and sham operated groups. Excitability of DRG neurons in the GERD and sham groups were also tested by whole-cell patch-clamp recordings. We demonstrated that ASIC1 and 3 expression were significantly increased in patients with RE compared with healthy controls. This correlated positively with symptom severity of heartburn and regurgitation (p < .001). Next, ASIC1 and 3 gene and protein expression in rodent models of RE and NERD were similarly increased in esophageal mucosa as well as T3-T5 DRG neurons compared with sham operation. DRG neurons from RE animals showed hyperexcitability compared with sham group. However, intrathecal injection of ASIC specific inhibitors, PcTx1 and APTEx-2, as well as silencing ASIC1 and 3 genes with specific siRNAs prevented visceral hypersensitivity. Overall, upregulation of ASIC1 and 3 may lead to visceral hypersensitivity in RE and NERD and may be a potential therapeutic target for PPI non-responsive patients.
Assuntos
Canais Iônicos Sensíveis a Ácido/biossíntese , Esôfago/metabolismo , Refluxo Gastroesofágico/metabolismo , Azia/metabolismo , Regulação para Cima , Canais Iônicos Sensíveis a Ácido/genética , Animais , Refluxo Gastroesofágico/genética , Azia/genética , Humanos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.
Assuntos
Colite , Imunidade Inata , Receptores Imunológicos , Receptor Gatilho 1 Expresso em Células Mieloides , Humanos , Colite/imunologia , Colite/patologia , Colite/psicologia , Giro do Cíngulo , Inflamação , Microglia/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Camundongos , Receptores Imunológicos/metabolismoRESUMO
Recent studies have demonstrated the vital role of P2X4 receptors (a family of ATP-gated non-selective cation channels) in the transmission of neuropathic and inflammatory pain. In this study, we investigated the role of spinal P2X4 receptors in chronic functional visceral hypersensitivity of neonatal maternal separation (NMS) rats. A rat model of irritable bowel syndrome was established by neonatal maternal separation. Visceral sensitivity was assessed by recording the response of the external oblique abdominal muscle to colorectal distension. P2X4 receptor antagonist and agonist were administrated intrathecally. The expression of P2X4 receptor was examined by Western Blot and immunofluorescence. The effect of P2X4 receptor antagonist on expression of brain-derived neurotrophic factor (BDNF) was assessed by Western Blot. We found neonatal maternal separation enhanced visceral hypersensitivity and increased the expression of P2X4 receptor in spinal thoracolumbar and lumbosacral segments of rats. Pharmacological results showed that visceral sensitivity was attenuated after intrathecal injection of P2X4 receptor antagonist, 5-BDBD, at doses of 10 nM or 100 nM, while visceral sensitivity was enhanced after intrathecal injection of P2X4 receptor agonist C5-TDS at doses of 10 µM or 15 µM. In addition, the spinal expression of BDNF significantly increased in NMS rats and intrathecal injection of 5-BDBD significantly decreased the expression of BDNF especially in NMS rats. C5-TDS failed to increase EMG amplitude in the presence of ANA-12 in control rats. Our results suggested the spinal P2X4 receptors played an important role in visceral hypersensitivity of NMS rats through BDNF.