RESUMO
Vitex negundo has strong antioxidant activity, but its primary antioxidant components are not clear. In this study, the antioxidant components were screened by offline two-dimensional liquid chromatography coupled with electrochemical detection (2D-LC-ECD) and subsequently assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, radical scavenging capacity, and molecular docking. Various fractions were isolated from Vitex negundo leaves, and 39 antioxidant components were screened and identified. All of the fractions containing the antioxidant components exhibited certain antioxidant activity. Correlation analysis revealed a strong correlation between the response of LC-ECD and the in vitro antioxidant activity of the fractions. Molecular docking demonstrated that components with high response to LC-ECD exhibited robust interaction with antioxidant-related target proteins. The main antioxidant components of Vitex negundo leaves were isoorientin, chlorogenic acid, agnuside, cynaroside, and scutellarin. The 2D-LC-ECD combined with LC-MS/MS was rapid and effective in screening the antioxidant components in Vitex negundo leaves and could also provide technical support for the discovery of antioxidant components with different polarities and contents in other medicinal and edible plants.
Assuntos
Antioxidantes , Simulação de Acoplamento Molecular , Folhas de Planta , Espectrometria de Massas em Tandem , Vitex , Vitex/química , Folhas de Planta/química , Espectrometria de Massas em Tandem/métodos , Antioxidantes/química , Antioxidantes/análise , Cromatografia Líquida/métodos , Extratos Vegetais/química , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Plant extracts are a great alternative to synthesizing nanoparticles of different metals and metal oxides. This green synthesis method has opened up numerous possibilities in various scientific domains. In present study, Leaf extract from Vitex negundo is a non-deciduous, long-lasting shrub from the Verbenaceae family is used as capping and reducing agents for the synthesis of silver and palladium nanoparticles. The characterization study UV-vis spectrophotometer analysis showed absorbance value around 320 nm which confirming that Ag-Pd nanoparticles have been successfully obtained. Further, SEM is used to investigate the morphology of Ag-Pd NPs, which revealing their spherical and rod-like configuration, aggregation, and the size of the particles are obtained between 50 and 100 nm. The successful synthesis of Ag-Pd NPs was further confirmed by the EDAX chart, which displayed the peak of Ag and Pd at bending energies between 0.5 and 1.5 keV. According to the quantitative study, Ag and Pd ions found about 5.24 and 13.28%, respectively. In addition, surface studies with TEM confirming that synthesized Ag-Pd NPs are predominates with spheres structure morphologies, with sizes averaging 11.20 nm and ranging from 10 to 20 nm. Further, Ag-Pd nanoparticles was applied as potential photocatalyst materials to degrade methylene blue dye and found about 85% of the degradation efficiency within 150 min of the sunlight exposure thus could be used as catalyst to removal of hazardous organic dye molecules.
Assuntos
Corantes , Nanopartículas Metálicas , Paládio , Prata , Vitex , Vitex/química , Paládio/química , Prata/química , Nanopartículas Metálicas/química , Catálise , Corantes/química , Extratos Vegetais/química , Folhas de Planta/química , Química Verde , Fotólise , Microscopia Eletrônica de TransmissãoRESUMO
The seeds of Vitex negundo have been used for inflammation-related disease treatment in traditional medicine. This study focused on the anti-osteoarthritis (OA) effects of the total lignans of V. negundo seeds (TOV) in monosodium iodoacetate-induced osteoarthritis rats and its pharmacokinetic properties, as well as the effects and potential mechanism of its main components VN1 (6-hydroxy-4-(4-hydroxy-3-methoxy-phenyl)-3-hydro-xymethyl-7-methoxy-3,4-dihydro-2-naphthaldehydeb) and VN2 (vitedoin A) on receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages (BMMs). TOV significantly attenuated osteoarthritis, leading to an increase in pain thresholds, improvement of knee articular cartilages and chondrocytes loss, and decreased total joint scores and serum levels of TNF-α, interleukin-1ß (IL-1ß), and prostaglandin E2 (PGE2) in osteoarthritis rats. The half-time (T1/2 ) was 2.82 h and 1.33 h, and the bioavailability was 15.34%-21.89% and 16.29%-22.11%, for VN1 and VN2, respectively. VN2, rather than VN1, remarkably inhibited tartrate-resistant acid phosphatase (TRAP) activity, reduced the number of TRAP-positive multinuclear cells, diminished the formation of actin ring, and decreased mRNA levels of cathepsin K (CTSK), TRAP, nuclear factor of activated T cell 1 (NFATc1), and osteoclast-associated receptor, as well as downregulated protein levels of p-ERK (phosphorylated extracellular signal-regulated kinase), TRAP, CTSK and NFATc1 in BMMs. These findings suggest TOV has promising therapeutic potential for OA treatment and VN2, in particular, attenuates osteoclast differentiation by suppressing ERK/NFATc1 signaling and actin ring, mainly accounting for the anti-OA efficacy of TOV.
Assuntos
Lignanas , Vitex , Ratos , Animais , Osteoclastos , Vitex/metabolismo , Actinas/metabolismo , Linfócitos T , Lignanas/farmacologia , Diferenciação CelularRESUMO
Adenosma bracteosum and Vitex negundo are natural sources of methoxylated flavonoids. Little is known about the α-glucosidase inhibition of multi-methoxylated flavonoid derivatives. Eighteen natural flavonoids were isolated from A. bracteosum and V. negundo. Seven halogenated derivatives were synthesized. Their chemical structures were elucidated by extensive NMR analysis and high-resolution mass spectroscopy as well as comparisons in literature. All compounds were evaluated for their α-glucosidase inhibition. Most compounds showed good activity with IC50 values ranging from 16.7 to 421.8â µM. 6,8-Dibromocatechin was the most active compound with an IC50 value of 16.7â µM. A molecular docking study was conducted, indicating that those compounds are potent α-glucosidase inhibitors.
Assuntos
Flavonoides , Vitex , Flavonoides/química , Vitex/química , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Ressonância Magnética , Inibidores de Glicosídeo Hidrolases/química , Estrutura MolecularRESUMO
CONTEXT: Endometrial cancer is a common gynecologic malignancy. Vitexin is an active flavonoid compound with an antitumor function. OBJECTIVE: This study elucidated the role of vitexin in endometrial cancer development and clarified the potential mechanism. MATERIALS AND METHODS: The toxicity of vitexin (0-80 µM) treatment for 24 h on HEC-1B and Ishikawa cells was tested utilizing the CCK-8 assay. Endometrial cancer cells were divided into vitexin 0, 5, 10, and 20 µM groups. Cell proliferation, angiogenesis and stemness in vitro after treatment with vitexin (0, 5, 10, 20 µM) for 24 h were evaluated using the EdU staining assay, tube formation assay and sphere formation assay, respectively. Twelve BALB/c mice were grouped into control and vitexin (80 mg/kg) groups to monitor tumour growth for 30 days. RESULTS: Vitexin suppressed cell viability of HEC-1B (IC50 = 9.89 µM) and Ishikawa (IC50 = 12.35 µM) cells. The proliferation (55.3% and 80% for HEC-1B; 44.7% and 75% for Ishikawa), angiogenesis (54.3% and 78.4% for HEC-1B; 47.1% and 68.2% for Ishikawa) and stemness capacity (57.2% and 87.3% for HEC-1B; 53.4% and 78.4% for Ishikawa) of endometrial cancer cells were inhibited by 10 and 20 µM vitexin. Furthermore, the inhibitory effects of vitexin on endometrial cancer were reversed by PI3K/AKT agonist 740Y-P (20 µM). Moreover, the xenograft tumour experiment lasting for 30 days proved that vitexin (80 mg/kg) blocked tumour growth of endometrial cancer in vivo. DISCUSSION AND CONCLUSIONS: Vitexin has therapeutic potential on endometrial cancer, which supports further clinical trials.
Assuntos
Apigenina , Neoplasias do Endométrio , Neovascularização Patológica , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apigenina/farmacologia , Células-Tronco Neoplásicas , Camundongos Endogâmicos BALB C , Animais , Camundongos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Parkinsonism is a neurodegenerative disease, mainly imbalance in dopamine and acetylcholine neurotransimitter in mid brain, which manifestation of dysfunctions of extrapyramidal like akinesia, tremor, rigidity and catalepsy etc., even cognitive and memory loss. The current study is framed to evaluate the effect of Vitex negundo (VNL) leaf extract in Haloperidol induced PD in rats. In vitro studies of antioxidant capacity were checked via DPPH and NO assays and identified its Acetylcholinesterase (AChE) inhibitory activity. Secondly the In vivo study of anti-PD activity in Haloperidol induced in rats were evaluated by Rotarod, morris water maze (MWM), cooks pole climb (CPC), actophotometer, novel object recognition (NOR), and T-maze were utilized to assess extrapyramidal, cognitive and memory function. Thirdly, changes in biomarker level viz. (AChE), butyrylcholinesterase. (BChE) in hippocampus and cortex, reduced glutathione (GSH), malondialdehyde (MDA), total protein (TP), superoxide dismutase (SOD), catalase (CAT), and dopamine level in the whole brain were measured. Finally, histopathology of hippocampus and cortex was examined at 40x magnification to access restoring integrity and maintaining the architecture of neuronal cell in the treatment group compared to control group and L-DOPA as a standard treatment group. V. negundo showed potent antioxidant potency on scavenging of DPPH (IC50 84.81 µg/ml) and NO (IC50 133.20 µg/ml) and possess AChE inhibitory potency (IC50 114.35 µg/ml) by in vitro studies. The Rotarod, MWM, CPC, Actophotometer, NOR, T-maze demonstrated that Haloperidol group administration declines performance time, ELT, TL and decreases locomotion, cognitive and memory respectively. The treatment of VNL 100, 200, and 400 mg/kg p.o. significantly (p < 0.05 to p < 0.0001) reversed. Whole brain AChE, BChE, and MDA level were significantly raised and GSH, TP, SOD, CAT and Dopamine were significantly declined in Haloperidol treated group rats, especially V. negundo 400 mg/kg p.o. highly significantly ameliorate the Haloperidol group altered pathological changes through the restoration of the cholinergic function, enhancing the antioxidant defense and by increasing the dopaminergic function. The current study provides validation of V. negundo for its anti-PD activity and could be a valuable source for the treatment of PD in future.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Vitex , Acetilcolinesterase , Animais , Butirilcolinesterase/farmacologia , Haloperidol/farmacologia , Neuroproteção , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RatosRESUMO
Vitex, the genus of the family Lamiaceae, comprises of about 230 species mostly distributed in the warm regions of Europe and temperate regions of Asia. Several Vitex species have been used as folk medicine in different countries for the treatment of various kinds of diseases and ailments. The main aim of this review is to collect and analyze the scientific information available about the Vitex species regarding their chemical constituents and pharmacological activities. The phytochemical investigation of various Vitex species has resulted in the isolation of about 556 chemical constituents belong to various chemical category viz. iridoids, diterpenoids, triterpenoids, flavonoids, lignans, sesquiterpenoids, monoterpenoids, ecdysteroids, and others. The crude extracts of different Vitex species as well as pure phytochemicals exhibited a wide spectrum of in-vitro and in-vivo pharmacological activities. In the present review, the scientific literature data on the ethnopharmacological, phytochemical, and pharmacological investigations on the genus Vitex are summarized. More attention should be given in future research to evaluate the pharmacological potential with detailed mechanism of actions for the pure compounds, extracts of plants from this genus. Moreover, their clinical study is needed to justify their use in modern medicine and to further exploring this genus for new drug discovery.
Assuntos
Lamiaceae , Vitex , Etnofarmacologia , Medicina Tradicional/métodos , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/químicaRESUMO
Four new phenolic glucosides, cannabifolins G-J (1-4), together with four known ones (5-8), were isolated from the leaves of Vitex negundo var. cannabifolia. Their structures were established by comprehensive analysis of 1D and 2D NMR data and comparison of their spectroscopic and physical data with the literature values. Compound 7 exhibited weak inhibition of nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells with IC50 value of 132.8â µM.
Assuntos
Vitex , Vitex/química , Glucosídeos/farmacologia , Glucosídeos/química , Folhas de Planta/química , Fenóis/química , Óxido NítricoRESUMO
Multiple sclerosis is a chronic autoimmune disorder that leads to the demyelination of nerve fibers, which is the major cause of non-traumatic disability all around the world. Herbal plants Nepeta hindustana L., Vitex negundo L., and Argemone albiflora L., in addition to anti-inflammatory and anti-oxidative effects, have shown great potential as neuroprotective agents. The study was aimed to develop a neuroprotective model to study the effectiveness of herbal plants (N. hindustana, V. negundo, and A. albiflora) against multiple sclerosis. The in vivo neuroprotective effects of ethanolic extracts isolated from N. hindustana, V. negundo, and A. albiflora were evaluated in lipopolysaccharides (LPS) induced multiple sclerosis Wistar rat model. The rat models were categorized into seven groups including group A as normal, B as LPS induced diseased group, while C, D, E, F, and G were designed as treatment groups. Histopathological evaluation and biochemical markers including stress and inflammatory (MMP-6, MDA, TNF-α, AOPPs, AGEs, NO, IL-17 and IL-2), antioxidant (SOD, GSH, CAT, GPx), DNA damage (Isop-2α, 8OHdG) as well as molecular biomarkers (RAGE, Caspase-8, p38) along with glutamate, homocysteine, acetylcholinesterase, and myelin binding protein (MBP) were investigated. The obtained data were analyzed using SPSS version 21 and GraphPad Prism 8.0. The different extract treated groups (C, D, E, F, G) displayed a substantial neuroprotective effect regarding remyelination of axonal terminals and oligodendrocytes migration, reduced lymphocytic infiltrations, and reduced necrosis of Purkinje cells. The levels of stress, inflammatory, and DNA damage markers were observed high in the diseased group B, which were reduced after treatments with plant extracts. The antioxidant activity was significantly reduced in diseased induced group B, however, their levels were raised after treatment with plant extract. Group F (a mélange of all the extracts) showed the most significant change among all other treatment groups (C, D, E, G). The communal dose of selected plant extracts regulates neurodegeneration at the cellular level resulting in restoration and remyelination of axonal neurons. Moreover, 400 mg/kg dose of three plants in conjugation (Group F) were found to be more effective in restoring the normal activities of all measured parameters than independent doses (Group C, D, E) and is comparable with standard drug nimodipine (Group G) clinically used for the treatment of multiple sclerosis. The present study, for the first time, reported the clinical evidence of N. hindustana, V. negundo, and A. albiflora against multiple sclerosis and concludes that all three plants showed remyelination as well neuroprotective effects which may be used as a potential natural neurotherapeutic agent against multiple sclerosis.
Assuntos
Esclerose Múltipla , Plantas Medicinais , Acetilcolinesterase/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Esclerose Múltipla/tratamento farmacológico , Estresse Oxidativo , Extratos Vegetais/química , Ratos , Ratos WistarRESUMO
Vitex negundo L. (V. negundo) is one of the important medicinal and anticancer enhancer herbs. This plant is commonly used in the preparation of traditional drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the current study aimed to investigate antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human HepG2 and MCF-7 cell lines, by pure compounds isolated from targeted fractions of V. negundo which were characterized by NMR, FTIR and HRMS analysis and identified as artemetin (FLV1), vitexicarpin (FLV2), and penduletin (FLV3) compounds. The FLV1, FLV2, and FLV3 compounds were evaluated for the antiproliferative potential against HepG2 and MCF-7 cell lines by cell viability assay and exhibited IC50 values of 2.3, 23.9 and 5.6 µM and 3.9, 25.8, and 6.4 µM, respectively. In addition, those compounds increased the level of reactive oxygen species production, induced cell death occurred via apoptosis, demonstrated by Annexin V-staining cells, contributed significantly to DNA damage, and led to the activation of caspase3/caspase8 pathways.Additionally, molecular docking was also conducted to rationalize the cancer cells inhibitory and to evaluate the ability of the FLV1, FLV2, and FLV3 compounds to be developed as good drug candidates for cancers treatment.
RESUMO
Gold nanoparticles (AuNPs) are gaining a lot of attention in recent decades from researchers due to their unique optoelectronic properties and their significance in the field of biomedicine. Keeping this in view, our research work was designed to investigate gold nanoparticles obtained by using a fungal endophytic strain Chaetomium globosum, isolated from Vitex negundo which showed significant activity on enzyme inhibition. In the present study, the fungal isolate C. globosum was characterized using HPLC and LC-MS. A novel compound Catechin was matched with standard Catechin. Further, the endophyte C. globosum extract was utilized to synthesize gold nanoparticles (CgAuNPs) which was analysed by UV-visible spectroscopy. The CgAuNPs exhibited wine red color and the absorption peak appeared at 542 nm confirming the formation of the AuNPs. Further, Fourier Transmission Infrared Spectroscopy (FTIR) was performed to confirm the various functional groups present in mycosynthesized CgAuNPs. FTIR analysis demonstrated the presence of amines, flavonoids, as well as the presence of amide I linkage which possibly reduces Au+ to Au0. The synthesized CgAuNPs exhibited potential cytotoxicity against HeLa cells in a dose dependent manner. Further, CgAuNPs demonstrated significant anti-inflammatory activity. Overall, the present work provides insights into the design of nano delivery and may be applied for clinical studies in future.
Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Chaetomium/química , Endófitos/química , Ouro/química , Nanopartículas Metálicas/química , Ácido Acético/toxicidade , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Carragenina/toxicidade , Catequina/química , Catequina/farmacologia , Catequina/uso terapêutico , Chaetomium/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Endófitos/isolamento & purificação , Endófitos/metabolismo , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoxigenase/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Camundongos , Folhas de Planta/química , Vitex/química , Vitex/metabolismo , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/efeitos dos fármacosRESUMO
Natural products are rich in several potent bioactive compounds, targeting complex network of proteins involved in various diseases. Vitex negundo (VN), commonly known as "chaste tree", is an ethnobotanically important plant with enormous medicinal properties. Different species of Vitex vary in chemical composition, thus producing different phytochemicals. Several bioactive compounds have been extracted from leaves, seeds, roots in form of volatile oils, flavonoids, lignans, iridoids, terpenes, and steroids. These bioactive compounds exhibit anti-inflammatory, antioxidant, antidiabetic, anticancer, antimicrobial. VN is typically known for its role in the modulation of cellular events like apoptosis, cell cycle, motility of sperms, polycystic ovary disease, and menstrual cycle. VN, reportedly, perturbs many cancer-signaling pathways involving p-p38, p-ERK1/2, and p-JNK in LPS-elicited cells, N-terminal kinase (JNK), COX-1 pathways, MAPK, NF-κB, tumor necrosis factor α (TNF-α), Akt, mTOR, vascular endothelial growth factor, hypoxia-inducible factor (HIF-1α). Several bioactive compounds obtained from VN have been commercialized and others are under investigation. This is the first review presenting up-to-date information about the VN, its bioactive constituents and their mode of action.
Assuntos
Extratos Vegetais/uso terapêutico , Vitex/química , Animais , Flavonoides , Humanos , Fitoterapia , Folhas de Planta , Raízes de Plantas , Sementes , Vitex/metabolismoRESUMO
A simple and efficient method was developed for the chemical fingerprint analysis and simultaneous determination of four phenylnaphthalene-type lignans in Vitex negundo seeds using high-performance liquid chromatography with diode array detection. For fingerprint analysis, 13 V. negundo seed samples were collected from different regions in China, and the fingerprint chromatograms were matched by the computer-aided Similarity Evaluation System for Chromatographic Fingerprint of TCM (Version 2004A). A total of 21 common peaks found in all the chromatograms were used for evaluating the similarity between these samples. Additionally, simultaneous quantification of four major bioactive ingredients was conducted to assess the quality of V. negundo seeds. Our results indicated that the contents of four lignans in V. negundo seeds varied remarkably in herbal samples collected from different regions. Moreover, the hierarchical clustering analysis grouped these 13 samples into three categories, which was consistent with the chemotypes of those chromatograms. The method developed in this study provides a substantial foundation for the establishment of reasonable quality control standards for V. negundo seeds.
Assuntos
Cromatografia de Fase Reversa/métodos , Medicamentos de Ervas Chinesas/química , Vitex/química , Controle de Qualidade , Sementes/químicaRESUMO
A new phenyldihydronaphthalene-type lignan, (3R,4S)-6-hydroxy-4-(4-hydroxy- 3-methoxyphenyl)-5,7-dimethoxy-3,4-dihydro-2-naphthaldehyde-3a-O-ß-d-glucopyranoside (1), and a new phenylnaphthalene-type lignan, 6,7,4'-trihydroxy-3'-methoxy-2,3- cycloligna-1,4-dien-2a,3a-olide (2), along with 10-known lignan derivatives (3-12) were isolated from the aerial part of Vitex negundo var. heterophylla. Their structures were established by comprehensive 1D- and 2D-NMR spectroscopic analyses.
Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Glucosídeos/isolamento & purificação , Lignanas/isolamento & purificação , Componentes Aéreos da Planta/química , Vitex/química , Medicamentos de Ervas Chinesas/química , Glucosídeos/química , Lignanas/química , Estrutura Molecular , Ressonância Magnética Nuclear BiomolecularRESUMO
Chemical constituents from the fruits of Vitex negundo var. cannabifolia and their nitric oxide (NO) inhibitory and cytotoxic activities were investigated. The compounds were isolated and purified by various column chromatography, and their structures were identified by physiochemical properties and spectroscopic data. Thirteen lignans and six phenolic compounds were isolated from the CH2Cl2 extract of the fruits of V. negundo var. cannabifolia, respectively. Their structures were elucidated as 6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-3,4-dihydro-2-naphthaldehyde (1), vitedoin A (2), vitexdoin F (3), detetrahydroconidendrin (4), vitexdoin E (5), 4-oxosesamin (6), L-sesamin (7), (+)-beechenol (8), ligballinol (9), 2-(4-hydroxyphenyl)-6-(3-methoxy-4-hydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (10), (-)-pinoresinol (11), balanophonin (12), thero-guaiacylglycerol-ß-coniferyl aldehyde ether (13), trans-p-coumaryl aldehyde (14), coniferyl aldehyde (15), 5,7-dihydroxychromone (16), trans-3,5-dimethoxy-4-hydroxy-cinnamic aldehyde (17), frambinone (18), and alternariol 4-methyl ether (19). Compounds 8-10,14,18,19 were firstly isolated from Verbenaceae family, compound 13 was obtained from Vitex species, and 6,7,12,15-17 from V. negundo var. cannabifolia for the first time, respectively. The isolated compounds were evaluated for their anti-inflammatory and cytotoxic effects in vitro. Eight compounds (3,5,7,10,11,14,15,17) showed inhibition against NO production in LPS-stimulated RAW 267.4 cells (IC50 in the range of 7.8-81.1 µmolâ¢L⻹) and four compounds (1-4) showed cytotoxicity on HepG-2 cells (IC50 in the range of 5.2-24.2 µmolâ¢L⻹).
Assuntos
Frutas/química , Compostos Fitoquímicos/isolamento & purificação , Vitex/química , Animais , Células Hep G2 , Humanos , Camundongos , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/farmacologia , Células RAW 264.7RESUMO
The article aims to review all the chemical constituents and pharmacological properties of Vitex negundo L. (Verbenaceae) (VN). VN is an important medicinal plant used as reputed herbal medicine with versatile pharmacological activities in China, India and Japan. A total of 104 referred articles about VN were compiled from major databases and academic publishers, such as MEDLINE, Pubmed, Scholar, Elsevier, Springer, Wiley and CNKI. As a result, a total of 120 compounds isolated from VN can be divided mainly into four classes: flavonoids, lignans, terpenoids and steroids. The crude extracts and purified compounds of VN exhibited promising bioactivities, including anti-nociceptive, antiinflammatory, anti-tumor, anti-oxidant, insecticidal, antimicrobial, anti-androgenic, anti-osteoporotic, anti-cataract, hepatoprotective and anti-hyperglycemic activity. All the reported data lead us to conclude that VN has convincing medicinal potential. However, further researches are needed to explore its bioactive constituents, the structure-activity relationship and their molecular mechanisms of action.
Assuntos
Extratos Vegetais/farmacologia , Plantas Medicinais/química , Vitex/química , Animais , China , Flavonoides , Humanos , Índia , Japão , Lignanas , Fitoterapia , Esteroides , TerpenosRESUMO
A new phenyldihydronaphthalene-type lignan, vitexdoin F (1), along with 22 known lignan derivatives (2-23) was isolated from the seeds of Vitex negundo var. cannabifolia. Their structures were established by comprehensive 1D and 2D NMR spectroscopic analyses. The antioxidant activities of these lignans were evaluated through 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assays, and 16 of these isolates exhibited obvious radical-scavenging effect on the stable-free radical, DPPH.
Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Lignanas/isolamento & purificação , Lignanas/farmacologia , Sementes/química , Vitex/química , Antioxidantes/química , Compostos de Bifenilo/farmacologia , Sequestradores de Radicais Livres/química , Lignanas/química , Ressonância Magnética Nuclear Biomolecular , Picratos/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Herbal medicines derived from plant extraction are affordable, more therapeutically effective, and have fewer side effects than contemporary medications. Vitex negundo L. (V. negundo). is a medicinal shrub, which contains numerous phytoconstituents. In ancient medicinal practices, V. negundo was primarily prescribed as an analgesic and anti-inflammatory drug. AIM OF THE STUDY: This study aims to evaluate the anti-inflammatory and antioxidant characteristics of crude extracts from V. negundo leaves, including those derived from petroleum ether (P), methanol (M), and aqueous (A) solvents. Additionally, the research seeks to identify the specific bioactive compounds responsible for these observed properties. MATERIALS AND METHODS: The nitric oxide scavenging study was performed to evaluate the V. negundo crude extract's ability to function as a nitric oxide scavenger. Protein denaturation and proteinase inhibition experiments were employed to study the ability of extracts to suppress proteolysis and inhibit the enzymes that cause tissue injury. The membrane-stabilizing potency of plant extracts were examined through the process of heat-induced hemolysis. The ability of the extracts to neutralize free radicals showed a dose-dependent response, and the aqueous extract exhibited substantially higher activity in both FRAP and DPPH. The GC-MS analysis of V. negundo extracts revealed a vast array of pharmacologically active metabolites. Based on this Bioassay-guided fractionation approach, the optimal extract was selected for the potent molecule isolation and characterization. RESULTS: The findings demonstrated that the aqueous extract of V. negundo exhibited markedly superior radical scavenging and anti-inflammatory capabilities compared to the other two extracts. Furthermore, a new molecule, 3,4,9-trimethyl-7-propyldecanoic acid was isolated from this extract, and its chemical structure was successfully determined. CONCLUSION: This study revealed that the aqueous extract of V. negundo demonstrated notably stronger in vitro anti-inflammatory and antioxidant properties in comparison to the methanol and petroleum ether extracts. The identified active compound, 3,4,9-trimethyl-7-propyldecanoic acid is likely responsible for the extract's free radical scavenging and anti-inflammatory effects. Furthermore, conducting both in vitro and in vivo studies is crucial to substantiate the potential of this active constituent for the development of an anti-inflammatory drug derived from V. negundo.
Assuntos
Antioxidantes , Vitex , Antioxidantes/farmacologia , Antioxidantes/química , Vitex/química , Metanol/química , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Solventes , ÁguaRESUMO
The aim of this study was to evaluate the in vitro anthelmintic effect of crude aqueous, methanol, ethanol, hydro alcohol and acetone extracts of Vitex negundo leaves against Haemonchus contortus eggs and larvae. Phytochemical analysis to identify the number of compounds in extracts was done by chemical tests and gas chromatography coupled to a mass spectrophotometer detector (GC-MS). First off all the effectiveness of dried plant materials was evaluated on larval development by mixing powdered material (no nano particles) to faecal cultures from donor sheep. Adding powder to the faecal culture resulted into 100% inhibition in larval development at 200 and 300 mg/g of faeces. The anthelmintic activity was assessed using the egg hatch assay (EHA) and the larval mortality assay (LMA). Comparison of mean inhibition percentage of egg embryonation, mean inhibition percentage of egg hatching and mean percentage of larval mortality at different concentrations with control was performed by one-way ANOVA. The means were compared for statistical significance using DMRT at P < 0.05. For both the assays, 50% inhibitory concentration (IC50) and lethal concentration (LC50) were calculated by probit analysis. Chemical test revealed presence of high concentration of saponin and flavoinoids and moderate concentration of total phenols in leaves. The antioxidant activity (radical scavenging activity, RSA %) measured was 35.47%. On GC-MS, the methanolic leaves extract revealed 30 phyto-compounds. On EHA, there was marked effect on inhibition of egg hatching by aqueous, hydro alcohol and acetone extracts. On LMA all the five extracts showed excellent larvicidal activity. V. negundo leaves methanol extract mediated silver nanoparticles were found very effective at much lower concentrations as compared to crude methanol extract. The results indicated that the V. negundo leaves crude extracts possessed excellent in vitro ovicidal and larvicidal properties against H. contortus which needs more investigation, especially in vivo trials for the control of parasite.
RESUMO
The compound 2,3-dehydrosilychristin, a flavonolignan linked to silychristin and silymarin, remains intriguing due to its challenging isolation from silymarin. While silymarin has been the exclusive source of flavonolignans - silybin, silychristin and silydianin - 2,3-dehydrosilychristin is reported in this study from Vitex negundo Linn. leaves. 2,3-Dehydrosilychristin (7) and 14 other compounds were isolated through focused extraction. Its subsequent pharmacological evaluation demonstrated potent antioxidant and in-vitro anti-inflammatory effects, notably inhibiting cytokines TNF-α, IL-6, IL-8 and VEGF. In in-vivo assessments, 2,3-dehydrosilychristin (7) revealed remarkable hepatoprotective potential by reducing liver enzyme levels AST and ALT. These findings expand the potential of 2,3-dehydrosilychristin and suggest bioprospecting Vitex species as alternate sources of bioactive flavonolignans.