Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Cell Sci ; 135(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35510502

RESUMO

The mammalian retromer consists of subunits VPS26 (either VPS26A or VPS26B), VPS29 and VPS35, and a loosely associated sorting nexin (SNX) heterodimer or a variety of other SNX proteins. Despite involvement in yeast and mammalian cell trafficking, the role of retromer in development is poorly understood, and its impact on primary ciliogenesis remains unknown. Using CRISPR/Cas9 editing, we demonstrate that vps-26-knockout worms have reduced brood sizes, impaired vulval development and decreased body length, all of which have been linked to ciliogenesis defects. Although preliminary studies did not identify worm ciliary defects, and impaired development limited additional ciliogenesis studies, we turned to mammalian cells to investigate the role of retromer in ciliogenesis. VPS35 localized to the primary cilium of mammalian cells, and depletion of VPS26, VPS35, VPS29, SNX1, SNX2, SNX5 or SNX27 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the centriolar protein, CP110 (also known as CCP110), and was required for its removal from the mother centriole. Herein, we characterize new roles for retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, suggesting a novel role for retromer in CP110 removal from the mother centriole.


Assuntos
Endossomos , Proteínas de Transporte Vesicular , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Endossomos/metabolismo , Mamíferos/metabolismo , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834898

RESUMO

The identification of the prognostic markers and therapeutic targets might benefit the diagnosis and treatment of pancreatic adenocarcinoma (PAAD), one of the most aggressive malignancies. Vacuolar protein sorting associated protein 26 A (VPS26A) is a candidate prognosis gene for hepatocellular carcinoma, but its expression and function in PAAD remain unknown. The mRNA and protein expression of VPS26A in PAAD was explored and validated by bioinformatics and immunohistochemical analysis. The correlation between VPS26A expression and various clinical parameters, genetic status, diagnostic and prognostic value, survival and immune infiltration were evaluated, and the co-expressed gene-set enrichment analysis for VPS26A was performed. Cytologic and molecular experiments were further carried out to investigate the role and potential mechanism of VPS26A in PAAD. The mRNA and protein levels of VPS26A were elevated in PAAD tissues. High VPS26A expression was associated with the advanced histological type, tumor stage simplified, smoking status and tumor mutational burden score, and the poor prognosis of PAAD patients. VPS26A expression was significantly correlated with immune infiltration and immunotherapy response. VPS26A-co-expressed genes were mainly enriched in the regulation of cell adhesion and actin cytoskeleton and the immune-response-regulating signaling pathway. Our experiments further demonstrated that VPS26A promoted the proliferation, migration and invasion potentials of PAAD cell lines through activating the EGFR/ERK signaling. Our study suggested that VPS26A could be a potential biomarker and a therapeutic target for PAAD through comprehensive regulation of its growth, migration and immune microenvironment.


Assuntos
Adenocarcinoma , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Regulação Neoplásica da Expressão Gênica , Prognóstico , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Traffic ; 20(7): 465-478, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30993794

RESUMO

Endosomes are dynamic intracellular compartments that control the sorting of a constant stream of different transmembrane cargos either for ESCRT-mediated degradation or for egress and recycling to compartments such as the Golgi and the plasma membrane. The recycling of cargos occurs within tubulovesicular membrane domains and is facilitated by peripheral membrane protein machineries that control both membrane remodelling and selection of specific transmembrane cargos. One of the primary sorting machineries is the Retromer complex, which controls the recycling of a large array of different cargo molecules in cooperation with various sorting nexin (SNX) adaptor proteins. Recently a Retromer-like complex was also identified that controls plasma membrane recycling of cargos including integrins and lipoprotein receptors. Termed "Retriever," this complex uses a different SNX family member SNX17 for cargo recognition, and cooperates with the COMMD/CCDC93/CCDC22 (CCC) complex to form a larger assembly called "Commander" to mediate endosomal trafficking. In this review we focus on recent advances that have begun to provide a molecular understanding of these two distantly related transport machineries.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Humanos , Nexinas de Classificação/química , Nexinas de Classificação/metabolismo
4.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502533

RESUMO

Various intrinsic and extrinsic factors can interfere with the process of protein folding, resulting in protein aggregates. Usually, cells prevent the formation of aggregates or degrade them to prevent the cytotoxic effects they may cause. However, during viral infection, the formation of aggregates may serve as a cellular defense mechanism. On the other hand, some viruses are able to exploit the process of aggregate formation and removal to promote their replication or evade the immune response. This review article summarizes the process of cellular protein aggregation and gives examples of how different viruses exploit it. Particular emphasis is placed on the ribonucleotide reductases of herpesviruses and how their additional non-canonical functions in viral immune evasion are closely linked to protein aggregation.


Assuntos
Evasão da Resposta Imune/imunologia , Agregados Proteicos , Agregação Patológica de Proteínas/imunologia , Viroses/imunologia , Vírus/imunologia , Herpesviridae/imunologia , Herpesviridae/fisiologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/virologia , Ribonucleotídeo Redutases/imunologia , Ribonucleotídeo Redutases/metabolismo , Viroses/metabolismo , Viroses/virologia
5.
Clin Genet ; 97(4): 644-648, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31845315

RESUMO

In this report, we describe two cousins with cognitive impairment, growth failure, skeletal abnormalities, and distinctive facial features. Genome sequencing failed to identify variants in known disease-associated genes explaining the phenotype. Extended comprehensive analysis of the two affected cousins' genomes, however, revealed that both share the homozygous nonsense variant c.178G>T (p.Glu60*) in the VPS26C gene. This gene encodes VPS26C, a member of the retriever integral membrane protein recycling pathway. The potential vital biological role of VPS26C, the nature of the variant which is predicted to result in loss-of-function, expression studies revealing significant reduction in the mutant transcript, and the co-segregation of the homozygous variant with the phenotype in two affected individuals all support that VPS26C is a novel gene associated with a previously unrecognized syndrome characterized by neurodevelopmental deficits, growth failure, skeletal abnormalities, and distinctive facial features.


Assuntos
Transtornos do Espectro Alcoólico Fetal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Anormalidades Musculoesqueléticas/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Códon sem Sentido/genética , Exoma/genética , Insuficiência de Crescimento/genética , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Homozigoto , Humanos , Masculino , Músculo Esquelético/anormalidades , Músculo Esquelético/fisiopatologia , Anormalidades Musculoesqueléticas/fisiopatologia , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma
6.
Plant J ; 94(4): 595-611, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29495075

RESUMO

The large retromer complex participates in diverse endosomal trafficking pathways and is essential for plant developmental programs, including cell polarity, programmed cell death and shoot gravitropism in Arabidopsis. Here we demonstrate that an evolutionarily conserved VPS26 protein (VPS26C; At1G48550) functions in a complex with VPS35A and VPS29 necessary for root hair growth in Arabidopsis. Bimolecular fluorescence complementation showed that VPS26C forms a complex with VPS35A in the presence of VPS29, and this is supported by genetic studies showing that vps29 and vps35a mutants exhibit altered root hair growth. Genetic analysis also demonstrated an interaction between a VPS26C trafficking pathway and one involving the SNARE VTI13. Phylogenetic analysis indicates that VPS26C, with the notable exception of grasses, has been maintained in the genomes of most major plant clades since its evolution at the base of eukaryotes. To test the model that VPS26C orthologs in animal and plant species share a conserved function, we generated transgenic lines expressing GFP fused with the VPS26C human ortholog (HsDSCR3) in a vps26c background. These studies illustrate that GFP-HsDSCR3 is able to complement the vps26c root hair phenotype in Arabidopsis, indicating a deep conservation of cellular function for this large retromer subunit across plant and animal kingdoms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Gravitropismo/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Endossomos/fisiologia , Genes Reporter , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Complexos Multiproteicos , Fenótipo , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Proteínas/genética , Proteínas Recombinantes de Fusão , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
J Neurosci ; 35(44): 14943-55, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538661

RESUMO

Retromer, which crucially contributes to endosomal sorting machinery through the retrieval and recycling of signaling receptors away from degradation, has been identified as a critical element for glutamatergic-receptor-dependent neural plasticity at excitatory synapses. We observed it accompanied by behavioral allodynia; neuropathic injury time-dependently enhanced VPS26A and SNX27 expression; VPS26A-SNX27 coprecipitation; and VPS26A-positive, SNX27-positive, and VPS26A-SNX27 double-labeled immunoreactivity in the dorsal horn of Sprague Dawley rats that were all sufficiently ameliorated through the focal knock-down of spinal VPS26A expression. Although the knock-down of spinal SNX27 expression exhibited similar effects, spinal nerve ligation (SNL)-enhanced VPS26A expression remained unaffected. Moreover, SNL also increased membrane-bound and total mGluR5 abundance, VPS26A-bound SNX27 and mGluR5 and mGluR5-bound VPS26A and SNX27 coprecipitation, and mGluR5-positive and VPS26A/SNX27/mGluR5 triple-labeled immunoreactivity in the dorsal horn, and these effects were all attenuated through the focal knock-down of spinal VPS26A and SNX27 expression. Although administration with MPEP adequately ameliorated SNL-associated allodynia, mGluR5 expression, and membrane insertion, SNL-enhanced VPS26A and SNX27 expression were unaffected. Together, these results suggested a role of spinal VPS26A-SNX27-dependent mGluR5 recycling in the development of neuropathic pain. This is the first study that links retromer-associated sorting machinery with the spinal plasticity underlying pain hypersensitivity and proposes the possible pathophysiological relevance of endocytic recycling in pain pathophysiology through the modification of glutamatergic mGluR5 recycling. SIGNIFICANCE STATEMENT: VPS26A-SNX27-dependent mGluR5 recycling plays a role in the development of neuropathic pain. The regulation of the VPS26A-SNX27 interaction that modifies mGluR5 trafficking and expression in the dorsal horn provides a novel therapeutic strategy for pain relief.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Masculino , Neuralgia/patologia , Medição da Dor/métodos , Células do Corno Posterior/patologia , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Mov Disord ; 30(4): 580-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475142

RESUMO

BACKGROUND: A pathogenic mutation (VPS35 p.D620N) within the retromer complex has been shown to segregate with late-onset Parkinson's disease (PD). Several studies have subsequently detected the mutation in patients with PD and not in controls. METHODS: Mutation screening of the coding regions of the retromer cargo recognition complex genes (VPS26A/B, VPS29, and VPS35) was carried out in patients with PD (n = 396), atypical parkinsonism (n = 229), and in 368 controls. RESULTS: Overall, we identified five rare nonsynonymous mutations in VPS26A and one in VPS35; none were observed in VPS26B or VPS29. Three VPS26A variants (p.K93E, p.M112V, and p.K297X), identified in patients with atypical parkinsonism, were not observed in controls from this study (n = 368) or from publically available data sets (n = 4,426). CONCLUSION: Our results support the hypothesis that rare variants in the retromer complex genes may be involved in the development of parkinsonism, although further studies are warranted before any solid conclusions can be drawn.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Transtornos Parkinsonianos/genética , Proteínas de Transporte Vesicular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Feminino , Humanos , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Cell Biol Int ; 39(11): 1299-306, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26113136

RESUMO

Retromer is a trimeric complex composed of Vps26, Vps29, and Vps35 and has been shown to be involved in trafficking and sorting of transmembrane proteins within the endosome. The Vps26 paralog, Vps26B, defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. Although endosomally associated, Vps26B-retromer does not bind the established retromer transmembrane cargo protein, cation-independent mannose 6-phosphate receptor (CI-M6PR), indicating it has a distinct role to retromer containing the Vps26A paralog. In the present study we use the previously established Vps26B-expressing HEK293 cell model to address the role of Vps26B-retromer in trafficking of the protease activated G-protein coupled receptor PAR-2 to the plasma membrane. In these cells there is no apparent defect in the initial activation of the receptor, as evidenced by release of intracellular calcium, ERK1/2 signaling and endocytosis of activated receptor PAR-2 into degradative organelles. However, we observe a significant delay in plasma membrane repopulation of the protease activated G protein-coupled receptor PAR-2 following stimulation, resulting in a defect in PAR-2 activation after resensitization. Here we propose that PAR-2 plasma membrane repopulation is regulated by Vps26B-retromer, describing a potential novel role for this complex.


Assuntos
Receptor PAR-2/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética
10.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37397996

RESUMO

The recycling of membrane proteins from endosomes to the cell surface is vital for cell signaling and survival. Retriever, a trimeric complex of VPS35L, VPS26C and VPS29, together with the CCC complex comprising CCDC22, CCDC93, and COMMD proteins, plays a crucial role in this process. The precise mechanisms underlying Retriever assembly and its interaction with CCC have remained elusive. Here, we present the first high-resolution structure of Retriever determined using cryogenic electron microscopy. The structure reveals a unique assembly mechanism, distinguishing it from its remotely related paralog, Retromer. By combining AlphaFold predictions and biochemical, cellular, and proteomic analyses, we further elucidate the structural organization of the entire Retriever-CCC complex and uncover how cancer-associated mutations disrupt complex formation and impair membrane protein homeostasis. These findings provide a fundamental framework for understanding the biological and pathological implications associated with Retriever-CCC-mediated endosomal recycling.

11.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333304

RESUMO

The recycling of membrane proteins from endosomes to the cell surface is vital for cell signaling and survival. Retriever, a trimeric complex of VPS35L, VPS26C and VPS29, together with the CCC complex comprising CCDC22, CCDC93, and COMMD proteins, plays a crucial role in this process. The precise mechanisms underlying Retriever assembly and its interaction with CCC have remained elusive. Here, we present the first high-resolution structure of Retriever determined using cryogenic electron microscopy. The structure reveals a unique assembly mechanism, distinguishing it from its remotely related paralog, Retromer. By combining AlphaFold predictions and biochemical, cellular, and proteomic analyses, we further elucidate the structural organization of the entire Retriever-CCC complex and uncover how cancer-associated mutations disrupt complex formation and impair membrane protein homeostasis. These findings provide a fundamental framework for understanding the biological and pathological implications associated with Retriever-CCC-mediated endosomal recycling.

12.
Front Genet ; 14: 1235821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799139

RESUMO

Although obesity in the domestic dog (Canis lupus familiaris) is known to decrease well-being and shorten lifespan, the genetic risk variants associated with canine obesity remain largely unknown. In our study, which focused on the obesity-prone Labrador Retriever breed, we conducted a genome-wide analysis to identify structural variants linked to body weight and obesity. Obesity status was based on a 5-point body condition score (BCS) and the obese dog group included all dogs with a BCS of 5, along with dogs with the highest body weight within the BCS 4 group. Data from whole-gene sequencing of fifty dogs, including 28 obese dogs, were bioinformatically analyzed to identify potential structural variants that varied in frequency between obese and healthy dogs. The seven most promising variants were further analyzed by droplet digital PCR in a group of 110 dogs, including 63 obese. Our statistical evidence suggests that common structural mutations in or near six genes, specifically ALPL, KCTD8, SGSM1, SLC12A6, RYR3, and VPS26C, may contribute to the variability observed in body weight and body condition scores among Labrador Retriever dogs. These findings emphasize the need for additional research to validate the associations and explore the specific functions of these genes in relation to canine obesity.

13.
Dis Model Mech ; 14(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33380435

RESUMO

Intracellular trafficking is a basic and essential cellular function required for delivery of proteins to the appropriate subcellular destination; this process is especially demanding in professional secretory cells, which synthesize and secrete massive quantities of cargo proteins via regulated exocytosis. The Drosophila larval salivary glands are composed of professional secretory cells that synthesize and secrete mucin proteins at the onset of metamorphosis. Using the larval salivary glands as a model system, we have identified a role for the highly conserved retromer complex in trafficking of secretory granule membrane proteins. We demonstrate that retromer-dependent trafficking via endosomal tubules is induced at the onset of secretory granule biogenesis, and that recycling via endosomal tubules is required for delivery of essential secretory granule membrane proteins to nascent granules. Without retromer function, nascent granules do not contain the proper membrane proteins; as a result, cargo from these defective granules is mistargeted to Rab7-positive endosomes, where it progressively accumulates to generate dramatically enlarged endosomes. Retromer complex dysfunction is strongly associated with neurodegenerative diseases, including Alzheimer's disease, characterized by accumulation of amyloid ß (Aß). We show that ectopically expressed amyloid precursor protein (APP) undergoes regulated exocytosis in salivary glands and accumulates within enlarged endosomes in retromer-deficient cells. These results highlight recycling of secretory granule membrane proteins as a critical step during secretory granule maturation and provide new insights into our understanding of retromer complex function in secretory cells. These findings also suggest that missorting of secretory cargo, including APP, may contribute to the progressive nature of neurodegenerative disease.


Assuntos
Drosophila melanogaster/genética , Drosophila/fisiologia , Glândulas Salivares/metabolismo , proteínas de unión al GTP Rab7/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Transporte Biológico , Modelos Animais de Doenças , Progressão da Doença , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Exocitose/fisiologia , Lisossomos/metabolismo , Microscopia Confocal , Doenças Neurodegenerativas/metabolismo , Fenótipo , Transporte Proteico , Vesículas Secretórias/metabolismo
14.
Cell Rep ; 37(13): 110182, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965419

RESUMO

Whether and how the pathogenic disruptions in endosomal trafficking observed in Alzheimer's disease (AD) are linked to its anatomical vulnerability remain unknown. Here, we began addressing these questions by showing that neurons are enriched with a second retromer core, organized around VPS26b, differentially dedicated to endosomal recycling. Next, by imaging mouse models, we show that the trans-entorhinal cortex, a region most vulnerable to AD, is most susceptible to VPS26b depletion-a finding validated by electrophysiology, immunocytochemistry, and behavior. VPS26b was then found enriched in the trans-entorhinal cortex of human brains, where both VPS26b and the retromer-related receptor SORL1 were found deficient in AD. Finally, by regulating glutamate receptor and SORL1 recycling, we show that VPS26b can mediate regionally selective synaptic dysfunction and SORL1 deficiency. Together with the trans-entorhinal's unique network properties, hypothesized to impose a heavy demand on endosomal recycling, these results suggest a general mechanism that can explain AD's regional vulnerability.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Endossomos/patologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Endossomos/metabolismo , Feminino , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neuroimagem , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
15.
Protoplasma ; 257(6): 1725-1729, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32780164

RESUMO

Eukaryotic organisms share many common features in terms of endomembrane trafficking. This fact has helped plant scientists to propose testable hypotheses on how plant intracellular membrane trafficking is achieved and regulated based on knowledge from yeast and mammals. However, when a new compartment has been identified in a plant cell that has a vesicle tethering complex located at a position which is completely different to its counterpart in yeast and mammalian cells, caution is demanded when interpreting possible interactions with other trafficking elements. This is exemplified by the recently discovered EMAC (ER and microtubule-associated compartment). It has been postulated that this compartment is the recipient of vacuolar sorting receptors (VSRs) transported retrogradely via "retromer vesicles" from a post-Golgi location. Unfortunately, this suggestion was based entirely on our knowledge of retromer from yeast and mammalian cells, and did not take into account the available literature on the composition, localization, and function of the plant retromer. It also lacked reference to recent contradictory findings on VSR trafficking. In this short article, we have tried to rectify this situation, pointing out that plant retromer may not function as a pentameric complex of two subunits: the retromer core and the sorting nexins.


Assuntos
Transporte Biológico/fisiologia , Complexo de Golgi/química , Nexinas de Classificação/química , Vacúolos/química
16.
Mol Cell Biol ; 40(19)2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32690545

RESUMO

Neuronal ceroid lipofuscinosis (NCL) is one of the most prevalent neurodegenerative disorders of early life, Parkinson's disease (PD) is the most common neurodegenerative disorder of midlife, while Alzheimer's disease (AD) is the most common neurodegenerative disorder of late life. While they are phenotypically distinct, recent studies suggest that they share a biological pathway, retromer-dependent endosomal trafficking. A retromer is a multimodular protein assembly critical for sorting and trafficking cargo out of the endosome. As a lysosomal storage disease, all 13 of NCL's causative genes affect endolysosomal function, and at least four have been directly linked to retromer. PD has several known causative genes, with one directly linked to retromer and others causing endolysosomal dysfunction. AD has over 25 causative genes/risk factors, with several of them linked to retromer or endosomal trafficking dysfunction. In this article, we summarize the emerging evidence on the association of genes causing NCL with retromer function and endosomal trafficking, review the recent evidence linking NCL genes to AD, and discuss how NCL, AD, and PD converge on a shared molecular pathway. We also discuss this pathway's role in microglia and neurons, cell populations which are critical to proper brain homeostasis and whose dysfunction plays a key role in neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Endossomos/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/genética , Animais , Transporte Biológico , Humanos , Doença de Parkinson/genética , Presenilina-1/genética , Presenilina-1/metabolismo
17.
Curr Genomics ; 10(2): 133-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19794886

RESUMO

Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. beta-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute the machinery used for receptor endocytosis. Visual- and beta-arrestins have a two-lobe, immunoglobulin-like, beta-strand sandwich structure. The recent resolution of the crystal structure of VPS26, one of the retromer subunits, unexpectedly evidences an arrestin fold in this protein, which is otherwise unrelated to arrestins. From a functional point of view, VPS26 is involved in the retrograde transport of the mannose 6-P receptor from the endosomes to the trans-Golgi network. In addition to the group of genuine arrestins and Vps26, mammalian cells harbor a vast repertoire of proteins that are related to arrestins on the basis of their PFAM Nter and Cter arrestin- domains, which are named Arrestin Domain- Containing proteins (ADCs). The biological role of ADC proteins is still poorly understood. The three subfamilies have been merged into an arrestin-related protein clan.This paper provides an overall analysis of arrestin clan proteins. The structures and functions of members of the subfamilies are reviewed in mammals and model organisms such as Drosophila, Caenorhabditis, Saccharomyces and Dictyostelium.

18.
mSphere ; 4(3)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243080

RESUMO

Brucella, the agent causing brucellosis, is a major zoonotic pathogen with worldwide distribution. Brucella resides and replicates inside infected host cells in membrane-bound compartments called Brucella-containing vacuoles (BCVs). Following uptake, Brucella resides in endosomal BCVs (eBCVs) that gradually mature from early to late endosomal features. Through a poorly understood process that is key to the intracellular lifestyle of Brucella, the eBCV escapes fusion with lysosomes by transitioning to the replicative BCV (rBCV), a replicative niche directly connected to the endoplasmic reticulum (ER). Despite the notion that this complex intracellular lifestyle must depend on a multitude of host factors, a holistic view on which of these components control Brucella cell entry, trafficking, and replication is still missing. Here we used a systematic cell-based small interfering RNA (siRNA) knockdown screen in HeLa cells infected with Brucella abortus and identified 425 components of the human infectome for Brucella infection. These include multiple components of pathways involved in central processes such as the cell cycle, actin cytoskeleton dynamics, or vesicular trafficking. Using assays for pathogen entry, knockdown complementation, and colocalization at single-cell resolution, we identified the requirement of the VPS retromer for Brucella to escape the lysosomal degradative pathway and to establish its intracellular replicative niche. We thus validated the VPS retromer as a novel host factor critical for Brucella intracellular trafficking. Further, our genomewide data shed light on the interplay between central host processes and the biogenesis of the Brucella replicative niche.IMPORTANCE With >300,000 new cases of human brucellosis annually, Brucella is regarded as one of the most important zoonotic bacterial pathogens worldwide. The agent causing brucellosis resides inside host cells within vacuoles termed Brucella-containing vacuoles (BCVs). Although a few host components required to escape the degradative lysosomal pathway and to establish the ER-derived replicative BCV (rBCV) have already been identified, the global understanding of this highly coordinated process is still partial, and many factors remain unknown. To gain deeper insight into these fundamental questions, we performed a genomewide RNA interference (RNAi) screen aiming at discovering novel host factors involved in the Brucella intracellular cycle. We identified 425 host proteins that contribute to Brucella cellular entry, intracellular trafficking, and replication. Together, this study sheds light on previously unknown host pathways required for the Brucella infection cycle and highlights the VPS retromer components as critical factors for the establishment of the Brucella intracellular replicative niche.


Assuntos
Brucella abortus/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Interações Hospedeiro-Patógeno , RNA Interferente Pequeno , Vacúolos/microbiologia , Brucella abortus/fisiologia , Replicação do DNA , Retículo Endoplasmático/microbiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Técnicas de Silenciamento de Genes , Genoma Bacteriano , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos
19.
Mech Dev ; 149: 1-8, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29031909

RESUMO

During endocytosis, molecules are internalized by the cell through the invagination of the plasma membrane. Endocytosis is required for proper cell function and for normal development in Drosophila. One component of the endocytic pathway is the retromer complex, which recycles transmembrane proteins to other parts of the cell such as the plasma membrane and the trans-Golgi network. Previous studies have shown that mutations to the retromer complex result in developmental defects in Drosophila. In humans, retromer dysfunction has been implicated in Alzheimer's and Parkinson's disease, but little is known about the role of the retromer complex in Drosophila oogenesis. In the current project, we examined the role of the retromer protein Vps26 in oogenesis by characterizing the phenotype of vps26 germline clones. Immunofluorescence was used to visualize the expression of membrane proteins and vesicular trafficking markers in mutant egg chambers. We find that vps26 germline clones exhibit a signaling defect between the germline cells and follicle cells indicated by an increase in LysoTracker staining of the border cells in the mutants. We show that this signaling defect in vps26 mutants may be the result of impaired Notch signaling based on the misexpression of multiple proteins in the Notch signaling pathway in vps26 mutants.


Assuntos
Proteínas de Drosophila/genética , Oogênese/genética , Receptores Notch/genética , Proteínas de Transporte Vesicular/genética , Animais , Drosophila melanogaster , Endocitose/genética , Mutação , Transporte Proteico/genética , Transdução de Sinais/genética , Rede trans-Golgi/genética
20.
FEBS Lett ; 589(13): 1430-6, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25937119

RESUMO

Retromer is a complex of proteins that functions in the endosome-to-Golgi retrieval cargo transport pathway. VPS35 works as the central subunit of retromer to recognize the cargos and binds with VPS29 and VPS26 via distinct domains. We show that deficiency of VPS35 or VPS29 accompanies degradation of other subunits, whereas VPS26 deficiency had no effect on VPS29 and VPS35 levels. Although VPS35 forms VPS26-VPS35 and VPS29-VPS35 sub-complexes with similar efficiency in vitro, VPS26-VPS35 was more easily degradable by the ubiquitin-proteasome-system than VPS29-VPS35. These results indicate that VPS29 and VPS35 form a biologically stable sub-complex in vivo.


Assuntos
Endossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Western Blotting , Endossomos/ultraestrutura , Células HeLa , Humanos , Microscopia Confocal , Microscopia Eletrônica , Complexos Multiproteicos/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/genética , Proteólise , Interferência de RNA , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética , Rede trans-Golgi/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA