Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 308(5): 505-513, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29739668

RESUMO

Staphylococcus aureus can cause wide range of infections from simple soft skin infections to severe endocarditis, bacteremia, osteomyelitis and implant associated bone infections (IABI). The focus of the present investigation was to study virulence properties of S. aureus isolates from acute and chronic IABI by means of their in vivo lethality, in vitro osteoblasts invasion, biofilm formation and subsequently whole genome comparison between high and low virulent strains. Application of insect infection model Galleria mellonella revealed high, intermediate and low virulence phenotypes of these clinical isolates, which showed good correlation with osteoblast invasion and biofilm formation assays. Comparative genomics of selected high (EDCC 5458) and low (EDCC 5464) virulent strains enabled the identification of molecular factors responsible for the development of acute and chronic IABI. Accordingly, the low virulent strain EDCC 5464 harbored point mutations resulting in frame shift mutations in agrC (histidine kinase in agr system), graS (histidine kinase in graSR, a two component system) and efeB (peroxidase in efeOBU operon, an iron acquisition system) genes. Additionally, we found a mobile element (present 11 copies in EDCC 5464) inserted at the end of ß-hemolysin (hlb) and sarU genes, which are involved in the pathogenesis and regulation of virulence gene expression in coordination with quorum sensing system. All these results are in good support with the low virulence behavior of EDCC 5464. From the previous literature, it is well known that agr defective S. aureus clinical strains are isolated from the chronic infections. Similarly, low virulent EDCC 5464 was isolated from chronic implant-associated bone infections infection whereas EDCC 5458 was obtained from acute implant-associated bone infections. Laboratory based in vitro and in vivo results and insights from comparative genomic analysis could be correlated with the clinical conclusion of IABIs and allows evidence-based treatment strategies based on the pathogenesis of the strain to cure life devastating implant-associated infections.


Assuntos
Osso e Ossos/microbiologia , Genoma Bacteriano/genética , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Osso e Ossos/patologia , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Humanos , Sequências Repetitivas Dispersas/genética , Mariposas/microbiologia , Osteoblastos/microbiologia , Osteomielite/patologia , Peroxidase/genética , Proteínas Quinases/genética , Percepção de Quorum/genética , Staphylococcus aureus/isolamento & purificação , Virulência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA