Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 79(2): 280-292.e8, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32533919

RESUMO

Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacterial genomes, but their functions are controversial. Although they are frequently postulated to regulate cell growth following stress, few null phenotypes for TA systems have been reported. Here, we show that TA transcript levels can increase substantially in response to stress, but toxin is not liberated. We find that the growth of an Escherichia coli strain lacking ten TA systems encoding endoribonuclease toxins is not affected following exposure to six stresses that each trigger TA transcription. Additionally, using RNA sequencing, we find no evidence of mRNA cleavage following stress. Stress-induced transcription arises from antitoxin degradation and relief of transcriptional autoregulation. Importantly, although free antitoxin is readily degraded in vivo, antitoxin bound to toxin is protected from proteolysis, preventing release of active toxin. Thus, transcription is not a reliable marker of TA activity, and TA systems do not strongly promote survival following individual stresses.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico , Sistemas Toxina-Antitoxina , Transcrição Gênica , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/crescimento & desenvolvimento , Plasmídeos/genética , Proteólise , RNA Bacteriano/metabolismo , RNA-Seq , Sistemas Toxina-Antitoxina/genética
2.
J Biol Chem ; 298(1): 101457, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861238

RESUMO

Toxin-antitoxin (TA) systems are ubiquitous regulatory modules for bacterial growth and cell survival following stress. YefM-YoeB, the most prevalent type II TA system, is present in a variety of bacterial species. In Staphylococcus aureus, the YefM-YoeB system exists as two independent paralogous copies. Our previous research resolved crystal structures of the two oligomeric states (heterotetramer and heterohexamer-DNA ternary complex) of the first paralog as well as the molecular mechanism of transcriptional autoregulation of this module. However, structural details reflecting molecular diversity in both paralogs have been relatively unexplored. To understand the molecular mechanism of how Sa2YoeB and Sa2YefM regulate their own transcription and how each paralog functions independently, we solved a series of crystal structures of the Sa2YoeB-Sa2YefM. Our structural and biochemical data demonstrated that both paralogous copies adopt similar mechanisms of transcriptional autoregulation. In addition, structural analysis suggested that molecular diversity between the two paralogs might be reflected in the interaction profile of YefM and YoeB and the recognition pattern of promoter DNA by YefM. Interaction analysis revealed unique conformational and activating force effected by the interface between Sa2YoeB and Sa2YefM. In addition, the recognition pattern analysis demonstrated that residues Thr7 and Tyr14 of Sa2YefM specifically recognizes the flanking sequences (G and C) of the promoter DNA. Together, these results provide the structural insights into the molecular diversity and independent function of the paralogous copies of the YoeB-YefM TA system.


Assuntos
Antitoxinas , Toxinas Bacterianas , DNA Bacteriano , Staphylococcus aureus , Sistemas Toxina-Antitoxina , Antitoxinas/química , Antitoxinas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , DNA Bacteriano/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
3.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260607

RESUMO

Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Modelos Biológicos , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transcrição Gênica
4.
Front Microbiol ; 12: 646299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732226

RESUMO

The emergence of drug resistant bacteria is a tricky and confronted problem in modern medicine, and one of important reasons is the widespread of toxin-antitoxin (TA) systems in pathogenic bacteria. Edwardsiella piscicida (also known as E. tarda) is the leading pathogen threatening worldwide fresh and seawater aquaculture industries and has been considered as a model organism for studying intracellular and systemic infections. However, the role of type II TA systems are completely unknown in aquatic pathogenic bacteria. In this study, we identified and characterized a type II TA system, YefM-YoeB, of E. piscicida, where YefM is the antitoxin and YoeB is the toxin. yefM and yoeB are co-expressed in a bicistronic operon. When expressed in E. coli, YoeB cause bacterial growth arrest, which was restored by the addition of YefM. To investigate the biological role of the TA system, two markerless yoeB and yefM-yoeB in-frame mutant strains, TX01ΔyoeB and TX01ΔyefM-yoeB, were constructed, respectively. Compared to the wild strain TX01, TX01ΔyefM-yoeB exhibited markedly reduced resistance against oxidative stress and antibiotic, and markedly reduced ability to form persistent bacteria. The deletion of yefM-yoeB enhanced the bacterial ability of high temperature tolerance, biofilm formation, and host serum resistance, which is the first study about the relationship between type II TA system and serum resistance. In vitro infection experiment showed that the inactivation of yefM-yoeB greatly enhanced bacterial capability of adhesion in host cells. Consistently, in vivo experiment suggested that the yefM-yoeB mutation had an obvious positive effect on bacteria dissemination of fish tissues and general virulence. Introduction of a trans-expressed yefM-yoeB restored the virulence of TX01ΔyefM-yoeB. These findings suggest that YefM-YoeB is involved in responding adverse circumstance and pathogenicity of E. piscicida. In addition, we found that YefM-YoeB negatively autoregulated the expression of yefM-yoeB and YefM could directly bind with own promoter. This study provides first insights into the biological activity of type II TA system YefM-YoeB in aquatic pathogenic bacteria and contributes to understand the pathogenesis of E. piscicida.

5.
Microorganisms ; 9(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33800997

RESUMO

The analysis of bacterial genomes is a potent tool to investigate the distribution of specific traits related to the ability of surviving in particular environments. Among the traits associated with the adaptation to hostile conditions, toxin-antitoxin (TA) systems have recently gained attention in lactic acid bacteria. In this work, genome sequences of Lacticaseibacillus strains of dairy origin were compared, focusing on the distribution of type I TA systems homologous to Lpt/RNAII and of the most common type II TA systems. A high number of TA systems have been identified spread in all the analyzed strains, with type I TA systems mainly located on plasmid DNA. The type II TA systems identified in these strains highlight the diversity of encoded toxins and antitoxins and their organization. This study opens future perspectives on the use of genomic data as a resource for the study of TA systems distribution and prevalence in microorganisms of industrial relevance.

6.
Toxins (Basel) ; 10(9)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231554

RESUMO

Type II (proteic) toxin-antitoxin systems (TAs) are widely distributed among bacteria and archaea. They are generally organized as operons integrated by two genes, the first encoding the antitoxin that binds to its cognate toxin to generate a harmless protein⁻protein complex. Under stress conditions, the unstable antitoxin is degraded by host proteases, releasing the toxin to achieve its toxic effect. In the Gram-positive pathogen Streptococcus pneumoniae we have characterized four TAs: pezAT, relBE, yefM-yoeB, and phD-doc, although the latter is missing in strain R6. We have assessed the role of the two yefM-yoeB and relBE systems encoded by S. pneumoniae R6 by construction of isogenic strains lacking one or two of the operons, and by complementation assays. We have analyzed the phenotypes of the wild type and mutants in terms of cell growth, response to environmental stress, and ability to generate biofilms. Compared to the wild-type, the mutants exhibited lower resistance to oxidative stress. Further, strains deleted in yefM-yoeB and the double mutant lacking yefM-yoeB and relBE exhibited a significant reduction in their ability for biofilm formation. Complementation assays showed that defective phenotypes were restored to wild type levels. We conclude that these two loci may play a relevant role in these aspects of the S. pneumoniae lifestyle and contribute to the bacterial colonization of new niches.


Assuntos
Antitoxinas/fisiologia , Toxinas Bacterianas/genética , Biofilmes , Streptococcus pneumoniae/fisiologia , Óperon , Estresse Oxidativo
7.
Toxins (Basel) ; 8(5)2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27164142

RESUMO

Toxin-antitoxin (TA) systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA) and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Farmacorresistência Bacteriana/genética , RNA Bacteriano/genética , Staphylococcus aureus/genética , Antitoxinas/genética , Genoma Bacteriano , Modelos Genéticos , Ribonucleases/genética , Staphylococcus aureus/patogenicidade , Virulência
8.
FEBS J ; 280(22): 5906-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24028219

RESUMO

Toxin-antitoxin complexes are ubiquitous in bacteria. The specificity of interactions between toxins and antitoxins from homologous but non-interacting systems was investigated. Based on molecular modeling, selected amino acid residues were changed to assess which positions were crucial in the specificity of toxin-antitoxin interaction in the related Axe-Txe and YefM-YoeB complexes. No cross-interactions between wild-type proteins were detected. However, a single amino acid substitution that converts a Txe-specific residue to a YoeB-specific residue reduced, but did not abolish, Txe interaction with the Axe antitoxin. Interestingly, this alteration (Txe-Asp83Tyr) promoted functional interactions between Txe and the YefM antitoxin. The interactions between Txe-Asp83Tyr and YefM were sufficiently strong to abolish Txe toxicity and to allow effective corepression by YefM-Txe-Asp83Tyr of the promoter from which yefM-yoeB is expressed. We conclude that Asp83 in Txe is crucial for the specificity of toxin-antitoxin interactions in the Axe-Txe complex and that swapping this residue for the equivalent residue in YoeB relaxes the specificity of the toxin-antitoxin interaction.


Assuntos
Antitoxinas/química , Toxinas Bacterianas/química , Proteínas de Escherichia coli/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Antitoxinas/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Enterococcus faecium/química , Enterococcus faecium/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/toxicidade , Genes Bacterianos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Filogenia , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA