Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639105

RESUMO

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Proteína GLI1 em Dedos de Zinco , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Camundongos Transgênicos , Masculino , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia
2.
Circ Res ; 133(5): 400-411, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37492967

RESUMO

BACKGROUND: FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS: We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS: Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (ß1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS: Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.


Assuntos
Actinas , Cardiomiopatias , Camundongos , Animais , Filaminas/genética , Filaminas/metabolismo , Actinas/genética , Actinas/metabolismo , Músculo Esquelético/metabolismo , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Mutação , Mamíferos
3.
Circ Res ; 132(11): 1468-1485, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042252

RESUMO

BACKGROUND: The ability of the right ventricle (RV) to adapt to an increased pressure afterload determines survival in patients with pulmonary arterial hypertension. At present, there are no specific treatments available to prevent RV failure, except for heart/lung transplantation. The wingless/int-1 (Wnt) signaling pathway plays an important role in the development of the RV and may also be implicated in adult cardiac remodeling. METHODS: Molecular, biochemical, and pharmacological approaches were used both in vitro and in vivo to investigate the role of Wnt signaling in RV remodeling. RESULTS: Wnt/ß-catenin signaling molecules are upregulated in RV of patients with pulmonary arterial hypertension and animal models of RV overload (pulmonary artery banding-induced and monocrotaline rat models). Activation of Wnt/ß-catenin signaling leads to RV remodeling via transcriptional activation of FOSL1 and FOSL2 (FOS proto-oncogene [FOS] like 1/2, AP-1 [activator protein 1] transcription factor subunit). Immunohistochemical analysis of pulmonary artery banding -exposed BAT-Gal (ß-catenin-activated transgene driving expression of nuclear ß-galactosidase) reporter mice RVs exhibited an increase in ß-catenin expression compared with their respective controls. Genetic inhibition of ß-catenin, FOSL1/2, or WNT3A stimulation of RV fibroblasts significantly reduced collagen synthesis and other remodeling genes. Importantly, pharmacological inhibition of Wnt signaling using inhibitor of PORCN (porcupine O-acyltransferase), LGKK-974 attenuated fibrosis and cardiac hypertrophy leading to improvement in RV function in both, pulmonary artery banding - and monocrotaline-induced RV overload. CONCLUSIONS: Wnt- ß-Catenin-FOSL signaling is centrally involved in the hypertrophic RV response to increased afterload, offering novel targets for therapeutic interference with RV failure in pulmonary hypertension.


Assuntos
Insuficiência Cardíaca , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Remodelação Ventricular , beta Catenina , Cateninas , Monocrotalina/toxicidade , Transdução de Sinais , Modelos Animais de Doenças , Função Ventricular Direita
4.
Circ Res ; 133(11): 927-943, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37846569

RESUMO

BACKGROUND: Cardiac ventricles provide the contractile force of the beating heart throughout life. How the primitive endocardium-layered myocardial projections called trabeculae form and mature into the adult ventricles is of great interest for biology and regenerative medicine. Trabeculation is dependent on the signaling protein Nrg1 (neuregulin-1). However, the mechanism of action of Nrg1 and its role in ventricular wall maturation are poorly understood. METHODS: We investigated the functions and downstream mechanisms of Nrg1 signaling during ventricular chamber development using confocal imaging, transcriptomics, and biochemical approaches in mice with cardiac-specific inactivation or overexpression of Nrg1. RESULTS: Analysis of cardiac-specific Nrg1 mutant mice showed that the transcriptional program underlying cardiomyocyte-oriented cell division and trabeculae formation depends on endocardial Nrg1 to myocardial ErbB2 (erb-b2 receptor tyrosine kinase 2) signaling and phospho-Erk (phosphorylated extracellular signal-regulated kinase; pErk) activation. Early endothelial loss of Nrg1 and reduced pErk activation diminished cardiomyocyte Pard3 and Crumbs2 (Crumbs Cell Polarity Complex Component 2) protein and altered cytoskeletal gene expression and organization. These alterations are associated with abnormal gene expression related to mitotic spindle organization and a shift in cardiomyocyte division orientation. Nrg1 is crucial for trabecular growth and ventricular wall thickening by regulating an epithelial-to-mesenchymal transition-like process in cardiomyocytes involving migration, adhesion, cytoskeletal actin turnover, and timely progression through the cell cycle G2/M phase. Ectopic cardiac Nrg1 overexpression and high pErk signaling caused S-phase arrest, sustained high epithelial-to-mesenchymal transition-like gene expression, and prolonged trabeculation, blocking compact myocardium maturation. Myocardial trabecular patterning alterations resulting from above- or below-normal Nrg1-dependent pErk activation were concomitant with sarcomere actin cytoskeleton disorganization. The Nrg1 loss- and gain-of-function transcriptomes were enriched for Yap1 (yes-associated protein-1) gene signatures, identifying Yap1 as a potential downstream effector. Furthermore, biochemical and imaging data reveal that Nrg1 influences pErk activation and Yap1 nuclear-cytoplasmic distribution during trabeculation. CONCLUSIONS: These data establish the Nrg1-ErbB2/ErbB4-Erk axis as a crucial regulator of cardiomyocyte cell cycle progression and migration during ventricular development.


Assuntos
Miócitos Cardíacos , Neuregulina-1 , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Neuregulina-1/genética , Miocárdio/metabolismo , Ventrículos do Coração/metabolismo , Divisão Celular
5.
Circulation ; 148(20): 1582-1592, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37721051

RESUMO

BACKGROUND: Proper nuclear organization is critical for cardiomyocyte function, because global structural remodeling of nuclear morphology and chromatin structure underpins the development and progression of cardiovascular disease. Previous reports have implicated a role for DNA damage in cardiac hypertrophy; however, the mechanism for this process is not well delineated. AMPK (AMP-activated protein kinase) family of proteins regulates metabolism and DNA damage response (DDR). Here, we examine whether a member of this family, SNRK (SNF1-related kinase), which plays a role in cardiac metabolism, is also involved in hypertrophic remodeling through changes in DDR and structural properties of the nucleus. METHODS: We subjected cardiac-specific Snrk-/- mice to transaortic banding to assess the effect on cardiac function and DDR. In parallel, we modulated SNRK in vitro and assessed its effects on DDR and nuclear parameters. We also used phosphoproteomics to identify novel proteins that are phosphorylated by SNRK. Last, coimmunoprecipitation was used to verify Destrin (DSTN) as the binding partner of SNRK that modulates its effects on the nucleus and DDR. RESULTS: Cardiac-specific Snrk-/- mice display worse cardiac function and cardiac hypertrophy in response to transaortic banding, and an increase in DDR marker pH2AX (phospho-histone 2AX) in their hearts. In addition, in vitro Snrk knockdown results in increased DNA damage and chromatin compaction, along with alterations in nuclear flatness and 3-dimensional volume. Phosphoproteomic studies identified a novel SNRK target, DSTN, a member of F-actin depolymerizing factor proteins that directly bind to and depolymerize F-actin. SNRK binds to DSTN, and DSTN downregulation reverses excess DNA damage and changes in nuclear parameters, in addition to cellular hypertrophy, with SNRK knockdown. We also demonstrate that SNRK knockdown promotes excessive actin depolymerization, measured by the increased ratio of G-actin to F-actin. Last, jasplakinolide, a pharmacological stabilizer of F-actin, rescues the increased DNA damage and aberrant nuclear morphology in SNRK-downregulated cells. CONCLUSIONS: These results indicate that SNRK is a key player in cardiac hypertrophy and DNA damage through its interaction with DSTN. This interaction fine-tunes actin polymerization to reduce DDR and maintain proper cardiomyocyte nuclear shape and morphology.


Assuntos
Actinas , Cardiomegalia , Camundongos , Animais , Actinas/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Dano ao DNA , Cromatina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
6.
Circ Res ; 130(1): 112-129, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34816743

RESUMO

BACKGROUND: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RBM24 (RNA-binding motif protein 24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim is to study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. METHODS: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. RESULTS: Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (eg, ACTN2 [α-actinin 2], TTN [titin], and MYH10 [non-muscle myosin IIB]) were misspliced. Consequently, MYH6 (muscle myosin II) cannot replace nonmuscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the ABD (actin-binding domain; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. CONCLUSIONS: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.


Assuntos
Processamento Alternativo , Células-Tronco Embrionárias Humanas/metabolismo , Desenvolvimento Muscular , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Actinina/genética , Actinina/metabolismo , Diferenciação Celular , Linhagem Celular , Conectina/genética , Conectina/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Proteínas de Ligação a RNA/genética
8.
Cereb Cortex ; 31(4): 2205-2219, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33251537

RESUMO

Changes in the shape and size of the dendritic spines are critical for synaptic transmission. These morphological changes depend on dynamic assembly of the actin cytoskeleton and occur differently in various types of neurons. However, how the actin dynamics are regulated in a neuronal cell type-specific manner remains largely unknown. We show that Fhod3, a member of the formin family proteins that mediate F-actin assembly, controls the dendritic spine morphogenesis of specific subpopulations of cerebrocortical pyramidal neurons. Fhod3 is expressed specifically in excitatory pyramidal neurons within layers II/III and V of restricted areas of the mouse cerebral cortex. Immunohistochemical and biochemical analyses revealed the accumulation of Fhod3 in postsynaptic spines. Although targeted deletion of Fhod3 in the brain did not lead to any defects in the gross or histological appearance of the brain, the dendritic spines in pyramidal neurons within presumptive Fhod3-positive areas were morphologically abnormal. In primary cultures prepared from the Fhod3-depleted cortex, defects in spine morphology were only detected in Fhod3 promoter-active cells, a small population of pyramidal neurons, and not in Fhod3 promoter-negative pyramidal neurons. Thus, Fhod3 plays a crucial role in dendritic spine morphogenesis only in a specific population of pyramidal neurons in a cell type-specific manner.


Assuntos
Córtex Cerebral/metabolismo , Espinhas Dendríticas/metabolismo , Forminas/biossíntese , Células Piramidais/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/ultraestrutura , Espinhas Dendríticas/genética , Espinhas Dendríticas/ultraestrutura , Forminas/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Células Piramidais/ultraestrutura
9.
J Muscle Res Cell Motil ; 42(2): 219-231, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34085177

RESUMO

Coordinated gastric smooth muscle contraction is critical for proper digestion and is adversely affected by a number of gastric motility disorders. In this study we report that the secreted protein Mfge8 (milk fat globule-EGF factor 8) inhibits the contractile responses of human gastric antrum muscles to cholinergic stimuli by reducing the inhibitory phosphorylation of the MYPT1 (myosin phosphatase-targeting subunit (1) subunit of MLCP (myosin light chain phosphatase), resulting in reduced LC20 (smooth muscle myosin regulatory light chain (2) phosphorylation. Mfge8 reduced the agonist-induced increase in the F-actin/G-actin ratios of ß-actin and γ-actin1. We show that endogenous Mfge8 is bound to its receptor, α8ß1 integrin, in human gastric antrum muscles, suggesting that human gastric antrum muscle mechanical responses are regulated by Mfge8. The regulation of gastric antrum smooth muscles by Mfge8 and α8 integrin functions as a brake on gastric antrum mechanical activities. Further studies of the role of Mfge8 and α8 integrin in regulating gastric antrum function will likely reveal additional novel aspects of gastric smooth muscle motility mechanisms.


Assuntos
Contração Muscular , Antro Pilórico , Antígenos de Superfície/metabolismo , Humanos , Proteínas do Leite/metabolismo , Músculo Liso , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Antro Pilórico/metabolismo
10.
Dev Biol ; 448(2): 260-270, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217598

RESUMO

Locomotion by tail beating powered by a system of bilateral paraxial muscle and notochord is likely one of the key evolutionary innovations that facilitated the origin and radiation of chordates. The innovation of paraxial muscle was accompanied by gene duplications in stem chordates that gave rise to muscular actins from cytoplasmic ancestral forms, which acquired contractile capability thanks to the recruitment of the myosin motor-machinery. To better understand the role of actin diversification during the evolution of chordates, in this work we have characterized the complete actin catalogue of the appendicularian Oikopleura dioica, an urochordate that maintains a chordate body plan throughout its life, including the notochord in a muscled tail that confers an active free-living pelagic style. Our genomic survey, phylogenetic analyses and Diagnostic-Actin-Values (DAVs) reveal that O. dioica has four muscular actins (ActnM1-4) and three cytoplasmic actins (ActnC1-3), most of which originated by independent gene duplications during the evolution of the appendicularian lineage. Detailed developmental expression atlas of the complete actin catalogue of O. dioica reveals differences in the temporal-regulation and tissue-specificity of different actin paralogs, suggesting complex processes of subfunctionalization during the evolution of urochordates. Our results suggest the presence of a "cardio-paraxial" muscular actin at least in the last common ancestor of Olfactores (i.e. vertebrates+urochordates). Our results reveal highly dynamic tissue-specific expression patterns for some cytoplasmic actins, including the notochord, ciliated cells and neurons with axonal projections, which challenge the classic housekeeping notion ascribed to these genes. Considering that previous work had demonstrated the existence of notochord-specific actins in cephalochordates, the tissue-specific expression of two cytoplasmic actins in the notochord of O. dioica suggests that this pattern plausibly reflects the ancestral condition of chordates, and provides new insights to better understand the evolutionary origin of the notochord.


Assuntos
Actinas/metabolismo , Cordados/embriologia , Coração/embriologia , Modelos Biológicos , Músculos/metabolismo , Notocorda/embriologia , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Cordados/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Notocorda/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 39(2): 137-149, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580573

RESUMO

Objective- During atherosclerosis, LDLs (low-density lipoproteins) accumulate in the arteries, where they become modified, aggregated, and retained. Such deposits of aggregated LDL (agLDL) can be recognized by macrophages, which attempt to digest and clear them. AgLDL catabolism promotes internalization of cholesterol and foam cell formation, which leads to the progression of atherosclerosis. Therapeutic blockade of this process may delay disease progression. When macrophages interact with agLDL in vitro, they form a novel extracellular, hydrolytic compartment-the lysosomal synapse (LS)-aided by local actin polymerization to digest agLDL. Here, we investigated the specific regulators involved in actin polymerization during the formation of the LS. Approach and Results- We demonstrate in vivo that atherosclerotic plaque macrophages contacting agLDL deposits polymerize actin and form a compartment strikingly similar to those made in vitro. Live cell imaging revealed that macrophage cortical F-actin depolymerization is required for actin polymerization to support the formation of the LS. This depolymerization is cofilin-1 dependent. Using siRNA-mediated silencing, pharmacological inhibition, genetic knockout, and stable overexpression, we elucidate key roles for Cdc42 Rho GTPase and GEF (guanine nucleotide exchange factor) Vav in promoting actin polymerization during the formation of the LS and exclude a role for Rac1. Conclusions- These results highlight critical roles for dynamic macrophage F-actin rearrangement and polymerization via cofilin-1, Vav, and Cdc42 in LS formation, catabolism of agLDL, and foam cell formation. These proteins might represent therapeutic targets to treat atherosclerotic disease.


Assuntos
Actinas/química , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Agregados Proteicos , Proteínas Proto-Oncogênicas c-vav/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Lipoproteínas LDL/química , Camundongos , Polimerização , Células RAW 264.7
12.
Arterioscler Thromb Vasc Biol ; 38(10): 2423-2434, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354218

RESUMO

Objective- Actin cytoskeleton assembly and organization, as a result of focal adhesion (FA) formation during cell adhesion, are dependent on reactive oxygen species and the cellular redox environment. Poldip2 (polymerase δ-interacting protein 2), a novel regulator of NOX4 (NADPH oxidase 4), plays a significant role in reactive oxygen species production and cytoskeletal remodeling. Thus, we hypothesized that endogenous reactive oxygen species derived from Poldip2/NOX4 contribute to redox regulation of actin and cytoskeleton assembly during integrin-mediated cell adhesion. Approach and Results- Using vascular smooth muscle cells, we verified that hydrogen peroxide (H2O2) levels increase during integrin-mediated cell attachment as a result of activation of NOX4. Filamentous actin (F-actin) was oxidized by sulfenylation during cell attachment, with a peak at 3 hours (0.80±0.04 versus 0.08±0.13 arbitrary units at time zero), which was enhanced by overexpression of Poldip2. Depletion of Poldip2 or NOX4 using siRNA, or scavenging of endogenous H2O2 with catalase, inhibited F-actin oxidation by 78±26%, 99±1%, and 98±1%, respectively. To determine the consequence of F-actin oxidation, we examined the binding of F-actin to vinculin, a protein involved in FA complexes that regulates FA maturation. Vinculin binding during cell adhesion as well as migration capacity were inhibited after transfection with actin containing 2 oxidation-resistant point mutations (C272A and C374A). Silencing of Poldip2 or NOX4 also impaired actin-vinculin interaction, which disturbed maturation of FAs and inhibited cell migration. Conclusions- These results suggest that integrin engagement during cell attachment activates Poldip2/Nox4 to oxidize actin, which modulates FA assembly.


Assuntos
Citoesqueleto de Actina/enzimologia , Proteínas de Transporte/metabolismo , Adesão Celular , Integrinas/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidase 4/metabolismo , Proteínas Nucleares/metabolismo , Vinculina/metabolismo , Citoesqueleto de Actina/genética , Animais , Proteínas de Transporte/genética , Movimento Celular , Células Cultivadas , Humanos , Peróxido de Hidrogênio/metabolismo , Músculo Liso Vascular/ultraestrutura , Miócitos de Músculo Liso/ultraestrutura , NADPH Oxidase 4/genética , Proteínas Nucleares/genética , Oxirredução , Ratos , Transdução de Sinais
13.
Cytometry A ; 93(3): 334-345, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29283496

RESUMO

The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Holografia/métodos , Aprendizado de Máquina , Microscopia de Fluorescência/métodos , Actinas/análise , Adesão Celular/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/fisiologia , Humanos , Invasividade Neoplásica/patologia
14.
Zhonghua Zhong Liu Za Zhi ; 40(4): 258-263, 2018 Apr 23.
Artigo em Zh | MEDLINE | ID: mdl-29730911

RESUMO

Objective: To investigate the expression and prognostic value of alpha smooth muscle actin(α-SMA) and Ki-67 in retroperitoneal leiomyosarcoma. Methods: Fifty retroperitoneal leiomyosarcoma patients who underwent operation in Chinese People's Liberation Army General Hospital from May 2002 to December 2015 were retrospectively analyzed. There were 14 males and 36 females form 21 to 79 and an average age of 48. Kaplan-Meier estimations and Cox regression analyses were performed. Results: Of the 50 cases, 45 patients underwent complete resection, and others are not. The overall 1, 3, 5-year survival rates were 86.0%, 46.0% and 28.0%, respectively. Tumor size, extent of resection, pathological stage, and expression levels of Ki-67 and alpha smooth muscle actin (α-SMA) were closely related to the survival of retroperitoneal leiomyosarcoma patients (all P<0.05), respectively. Multivariate analysis showed that pathological grade and degree of surgical resection were independent risk factors in the prognosis of patients (P<0.05). Conclusion: The high expression of α-SMA and Ki-67 are indicators of poor prognosis in retroperitoneal leiomyosarcoma, which can be used as a potential survival predictor in patients with retroperitoneal leiomyosarcoma.


Assuntos
Actinas/metabolismo , Antígeno Ki-67/metabolismo , Leiomiossarcoma/metabolismo , Leiomiossarcoma/mortalidade , Proteínas de Neoplasias/metabolismo , Neoplasias Retroperitoneais/metabolismo , Neoplasias Retroperitoneais/mortalidade , Adulto , Idoso , Feminino , Humanos , Estimativa de Kaplan-Meier , Leiomiossarcoma/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Análise de Regressão , Neoplasias Retroperitoneais/patologia , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Fatores de Tempo , Adulto Jovem
15.
Respir Res ; 17(1): 117, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27658983

RESUMO

BACKGROUND: Asthma is a worldwide health burden with an alarming prevalence. For years, asthma-associated airway injury remains elusive. Transforming growth factor ß1 (TGF-ß1) is a pleiotropic cytokine that has been shown to be involved in the synthesis of the matrix molecules associated with airway remodeling. Human antigen R (HuR), the member of the Hu RNA-binding protein family, can bind to a subset of short-lived mRNAs in their 3' untranslated regions (UTR). However, the functional roles and relevant signaling pathways of HuR in airway remodeling have not been well illustrated. Thus, we aim to explore the relationship between HuR and TGF-ß1 in platelet derived growth factor(PDGF)-induced airway smooth muscle (ASM) cells and asthmatic animal. METHODS: Cultured human ASM cells were stimulated by PDGF for 0, 6, 12 and 24 h. Western blotting, RT-PCR and immunofluoresence were used to detect the expression of HuR, TGF-ß1, α-smooth muscle actins (α-SMA) and collagen type I (Col-I). Then knockdown of HuR, flow cytomerty was used to detect the morphological change and western blotting for functionally change of ASM cells. Furthermore, the interference of TGF-ß1 and exogenous TGF-ß1 were implemented to testify the influence on HuR. A murine OVA-driven allergic model based on sensitization and challenge was developed. The inflammatory response was measured by bronchoalveolar lavage fluid (BALF), airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was assessed by sirius red staining and periodic acid-schiff staining, the expression level of HuR, TGF-ß1 and α-SMA were measured by RT-PCR, western blotting and immunohistochemistry. RESULTS: Here, we found that PDGF elevated HuR expression both at mRNA and protein level in cultured ASM cells at a time-dependent manner, which was simultaneously accompanied by the enhanced expression of TGF-ß1, α-SMA and Col-I. Further study revealed that the knockdown of HuR significantly increased the apoptosis of ASM cells and dampened TGF-ß1, Col-I and α-SMA expression. However, interfering TGF-ß1 with siRNA or extra addition of TGF-ß1, HuR could restore its production as well as Col-I. Compared with normal mice stimulating with PBS, OVA-induced mice owned high amount of inflammatory cells, such as eosinophils, lymphocytes and neutrophils except macrophages. HE staining showed accumulation of inflammatory cells surrounding bronchiole and sirius red staining distinguished collagen type I and III deposition around the bronchiole. Higher abundance of HuR, TGF-ß1 and α-SMA were verified in OVA-induced mice than PBS-induced mice by RT-PCR, western blotting and immunohistochemistry. CONCLUSIONS: A HuR/TGF-ß1 feedback circuit was established to regulate airway remodeling in vivo and in vitro and targeting this feedback has considerable potential for the intervention of asthma.

16.
J Thromb Haemost ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777258

RESUMO

BACKGROUND AND OBJECTIVE: Endocytosis is the process by which platelets incorporate extracellular molecules into their secretory granules. Endocytosis is mediated by the actin cytoskeleton in nucleated cells, however, the endocytic mechanisms in platelets are undefined. To better understand platelet endocytosis, we studied gelsolin (Gsn), an actin-severing protein that promotes actin assembly. METHODS: Mouse platelets from gelsolin-null (Gsn-/-) and wild-type (WT) controls were used. The uptake of fluorescent cargo molecules was compared as a measure of their endocytic efficiency. Receptor-mediated endocytosis was measured by the uptake of fibrinogen and transferrin; fluid-phase endocytosis was monitored by the uptake of fluorescent dextrans. RESULTS: ADP-stimulated WT platelets readily internalized both receptor-mediated and fluid-phase cargo. In contrast, Gsn-/- platelets showed a severe defect in the endocytosis of both types of cargo. The treatment of WT platelets with the actin-disrupting drugs cytochalasin D and jasplankinolide also reduced endocytosis. Notably, the individual and combined effects of Gsn deletion and drug treatment were similar for both receptor-mediated and fluid-phase endocytosis, indicating that Gsn mediates endocytosis via its action on the actin cytoskeleton. CONCLUSION: Our study demonstrates that Gsn plays a key role in the uptake of bioactive mediators by platelets.

17.
Adv Sci (Weinh) ; 11(10): e2305600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38152963

RESUMO

Despite the potential of protein therapeutics, the cytosolic delivery of proteins with high efficiency and bioactivity remains a significant challenge owing to exocytosis and lysosomal degradation after endocytosis. Therefore, it is important to develop a safe and efficient strategy to bypass endocytosis. Inspired by the extraordinary capability of filamentous-actin (F-actin) to promote cell membrane fusion, a cyanine dye assembly-containing nanoplatform mimicking the structure of natural F-actin is developed. The nanoplatform exhibits fast membrane fusion to cell membrane mimics and thus enters live cells through membrane fusion and bypasses endocytosis. Moreover, it is found to efficiently deliver protein cargos into live cells and quickly release them into the cytosol, leading to high protein cargo transfection efficiency and bioactivity. The nanoplatform also results in the superior inhibition of tumor cells when loaded with anti-tumor proteins. These results demonstrate that this fusogenic nanoplatform can be valuable for cytosolic protein delivery and tumor treatment.


Assuntos
Actinas , Neoplasias , Humanos , Actinas/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo , Neoplasias/metabolismo
18.
Adv Healthc Mater ; 13(18): e2304254, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593989

RESUMO

In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.


Assuntos
Hidrogéis , Miócitos de Músculo Liso , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Mecanotransdução Celular/fisiologia , Suínos , Matriz Extracelular/metabolismo , Células Cultivadas
19.
Hypertension ; 80(12): 2559-2571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37767691

RESUMO

BACKGROUND: Children from pregnancies affected by preeclampsia have an increased risk of cognitive and behavioral alterations via unknown pathophysiology. We tested the hypothesis that preeclampsia generated reduced brain cortex angiogenesis in the offspring. METHODS: The preeclampsia-like syndrome (PELS) mouse model was generated by administering the nitric oxide inhibitor NG-nitroarginine methyl ester hydrochloride. Confirmatory experiments were done using 2 additional PELS models. While in vitro analysis used mice and human brain endothelial cells exposed to serum of postnatal day 5 pups or umbilical plasma from preeclamptic pregnancies, respectively. RESULTS: We report significant reduction in the area occupied by blood vessels in the motor and somatosensory brain cortex of offspring (postnatal day 5) from PELS compared with uncomplicated control offspring. These data were confirmed using 2 additional PELS models. Furthermore, circulating levels of critical proangiogenic factors, VEGF (vascular endothelial growth factor), and PlGF (placental growth factor) were lower in postnatal day 5 PELS. Also we found lower VEGF receptor 2 (KDR [kinase insert domain-containing receptor]) levels in mice and human endothelial cells exposed to the serum of postnatal day 5 PELS or fetal plasma of preeclamptic pregnancies, respectively. These changes were associated with lower in vitro angiogenic capacity, diminished cell migration, larger F-actin filaments, lower number of filopodia, and lower protein levels of F-actin polymerization regulators in brain endothelial cells exposed to serum or fetal plasma of offspring from preeclampsia. CONCLUSIONS: Offspring from preeclampsia exhibited diminished brain cortex angiogenesis, associated with lower circulating VEGF/PlGF/KDR protein levels, impaired brain endothelial migration, and dysfunctional assembly of F-actin filaments. These alterations may predispose to structural and functional alterations in long-term brain development.


Assuntos
Pré-Eclâmpsia , Proteínas da Gravidez , Gravidez , Criança , Feminino , Humanos , Animais , Camundongos , Fator de Crescimento Placentário/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas da Gravidez/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular
20.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38256871

RESUMO

Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA