Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Immunol Rev ; 310(1): 27-46, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35733376

RESUMO

Immunological memory is the basis of protective immunity provided by vaccines and previous infections. Immunological memory can develop from multiple branches of the adaptive immune system, including CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing development; quantitative and qualitative features of different cellular and anatomical compartments; and durability of each cellular component and antibodies. Given the sophistication of the measurements; the size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head comparisons between infection and vaccines or between multiple vaccines, the understanding of immune memory for 1 year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , COVID-19/prevenção & controle , Estudos Transversais , Humanos , Memória Imunológica , SARS-CoV-2
2.
Biotechnol Bioeng ; 121(7): 2175-2192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613199

RESUMO

In the era of Biopharma 4.0, process digitalization fundamentally requires accurate and timely monitoring of critical process parameters (CPPs) and quality attributes. Bioreactor systems are equipped with a variety of sensors to ensure process robustness and product quality. However, during the biphasic production of viral vectors or replication-competent viruses for gene and cell therapies and vaccination, current monitoring techniques relying on a single working sensor can be affected by the physiological state change of the cells due to infection/transduction/transfection step required to initiate production. To address this limitation, a multisensor (MS) monitoring system, which includes dual-wavelength fluorescence spectroscopy, dielectric signals, and a set of CPPs, such as oxygen uptake rate and pH control outputs, was employed to monitor the upstream process of adenovirus production in HEK293 cells in bioreactor. This system successfully identified characteristic responses to infection by comparing variations in these signals, and the correlation between signals and target critical variables was analyzed mechanistically and statistically. The predictive performance of several target CPPs using different multivariate data analysis (MVDA) methods on data from a single sensor/source or fused from multiple sensors were compared. An MS regression model can accurately predict viable cell density with a relative root mean squared error (rRMSE) as low as 8.3% regardless of the changes occurring over the infection phase. This is a significant improvement over the 12% rRMSE achieved with models based on a single source. The MS models also provide the best predictions for glucose, glutamine, lactate, and ammonium. These results demonstrate the potential of using MVDA on MS systems as a real-time monitoring approach for biphasic bioproduction processes. Yet, models based solely on the multiplicity and timing of infection outperformed both single-sensor and MS models, emphasizing the need for a deeper mechanistic understanding in virus production prediction.


Assuntos
Adenoviridae , Reatores Biológicos , Humanos , Células HEK293 , Reatores Biológicos/virologia , Adenoviridae/genética , Análise Multivariada , Cultura de Vírus/métodos
3.
J Infect Dis ; 226(3): 396-406, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33400792

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a significant cause of severe lower respiratory tract disease in children and older adults, but has no approved vaccine. This study assessed the potential of Ad26.RSV.preF to protect against RSV infection and disease in an RSV human challenge model. METHODS: In this double-blind, placebo-controlled study, healthy adults aged 18-50 years were randomized 1:1 to receive 1 × 1011 vp Ad26.RSV.preF or placebo intramuscularly. Twenty-eight days postimmunization, volunteers were challenged intranasally with RSV-A (Memphis 37b). Assessments included viral load (VL), RSV infections, clinical symptom score (CSS), safety, and immunogenicity. RESULTS: Postchallenge, VL, RSV infections, and disease severity were lower in Ad26.RSV.preF (n = 27) vs placebo (n = 26) recipients: median VL area under the curve (AUC) quantitative real-time polymerase chain reaction: 0.0 vs 236.0 (P = .012; predefined primary endpoint); median VL-AUC quantitative culture: 0.0 vs 109; RSV infections 11 (40.7%) vs 17 (65.4%); median RSV AUC-CSS 35 vs 167, respectively. From baseline to 28 days postimmunization, geometric mean fold increases in RSV A2 neutralizing antibody titers of 5.8 and 0.9 were observed in Ad26.RSV.preF and placebo, respectively. Ad26.RSV.preF was well tolerated. CONCLUSIONS: Ad26.RSV.preF demonstrated protection from RSV infection through immunization in a human challenge model, and therefore could potentially protect against natural RSV infection and disease. CLINICAL TRIALS REGISTRATION: NCT03334695; CR108398, 2017-003194-33 (EudraCT); VAC18193RSV2002.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Humanos , Imunização , Proteínas Virais de Fusão
4.
J Infect Dis ; 223(4): 699-708, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32851411

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) and influenza cause significant disease burden in older adults. Overlapping RSV and influenza seasonality presents the opportunity to coadminister vaccines for both infections. This study assessed coadministration of the investigational vaccine, Ad26.RSV.preF, an adenovirus serotype 26 (Ad26) vector encoding RSV F protein stabilized in its prefusion conformation (pre-F), with a seasonal influenza vaccine in older adults. METHODS: In this phase 2a, double-blind, placebo-controlled study, 180 adults aged ≥60 years received Ad26.RSV.preF plus Fluarix on day 1 and placebo on day 29, or placebo plus Fluarix on day 1 and Ad26.RSV.preF on day 29 (control). RESULTS: The coadministration regimen had an acceptable tolerability profile. Reactogenicity was generally higher after Ad26.RSV.preF versus Fluarix, but symptoms were generally transient and mild or moderate. At 28 days after the first vaccination, the upper confidence intervals of the hemagglutination inhibition antibody geometric mean ratio (control/coadministration) for all influenza strains were <2, demonstrating noninferiority. Robust neutralizing and binding antibody responses to RSV A2 were observed in both groups. CONCLUSIONS: Coadministration of Fluarix with Ad26.RSV.preF vaccine had an acceptable safety profile and showed no evidence of interference in immune response. The results are compatible with simultaneous seasonal vaccination with both vaccines. CLINICAL TRIALS REGISTRATION: NCT03339713.


Assuntos
Imunogenicidade da Vacina , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Método Duplo-Cego , Feminino , Humanos , Esquemas de Imunização , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/efeitos adversos , Masculino , Pessoa de Meia-Idade , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sinciciais Respiratórios/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia
5.
J Neurosci ; 39(41): 7994-8012, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31455662

RESUMO

The calyx of Held, a large glutamatergic presynaptic terminal in the auditory brainstem undergoes developmental changes to support the high action-potential firing rates required for auditory information encoding. In addition, calyx terminals are morphologically diverse, which impacts vesicle release properties and synaptic plasticity. Mitochondria influence synaptic plasticity through calcium buffering and are crucial for providing the energy required for synaptic transmission. Therefore, it has been postulated that mitochondrial levels increase during development and contribute to the morphological-functional diversity in the mature calyx. However, the developmental profile of mitochondrial volumes and subsynaptic distribution at the calyx of Held remains unclear. To provide insight on this, we developed a helper-dependent adenoviral vector that expresses the genetically encoded peroxidase marker for mitochondria, mito-APEX2, at the mouse calyx of Held. We developed protocols to detect labeled mitochondria for use with serial block face scanning electron microscopy to carry out semiautomated segmentation of mitochondria, high-throughput whole-terminal reconstruction, and presynaptic ultrastructure in mice of either sex. Subsequently, we measured mitochondrial volumes and subsynaptic distributions at the immature postnatal day (P)7 and the mature (P21) calyx. We found an increase of mitochondria volumes in terminals and axons from P7 to P21 but did not observe differences between stalk and swelling subcompartments in the mature calyx. Based on these findings, we propose that mitochondrial volumes and synaptic localization developmentally increase to support high firing rates required in the initial stages of auditory information processing.SIGNIFICANCE STATEMENT Elucidating the developmental processes of auditory brainstem presynaptic terminals is critical to understanding auditory information encoding. Additionally, morphological-functional diversity at these terminals is proposed to enhance coding capacity. Mitochondria provide energy for synaptic transmission and can buffer calcium, impacting synaptic plasticity; however, their developmental profile to ultimately support the energetic demands of synapses following the onset of hearing remains unknown. Therefore, we created a helper-dependent adenoviral vector with the mitochondria-targeting peroxidase mito-APEX2 and expressed it at the mouse calyx of Held. Volumetric reconstructions of serial block face electron microscopy data of immature and mature labeled calyces reveal that mitochondrial volumes are increased to support high firing rates upon maturity.


Assuntos
Mitocôndrias/fisiologia , Tamanho Mitocondrial/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/ultraestrutura , Cálcio/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Metabolismo Energético/fisiologia , Feminino , Vetores Genéticos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Mitocôndrias/ultraestrutura , Plasticidade Neuronal , Terminações Pré-Sinápticas/ultraestrutura
6.
Eur J Immunol ; 49(9): 1356-1363, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106398

RESUMO

Adenoviral vectors induce robust epitope-specific CD8+ T cell responses. Within the repertoire of responses generated both conventional memory evolution and the phenomenon of memory inflation are seen. The rules governing which epitopes inflate are not fully known, but may include a role for both antigen processing and competition. To investigate this, we looked at memory generated from vectors targeting the Gp33-41 (KAVYNFATC/K9C) epitope from the gp of lymphocytic choriomeningitis virus (LCMV) in mice. This well-described epitope has both the Gp33-41 and Gp34-41 epitopes embedded within it. Vaccination with a full-length gp or a minigene Ad-Gp33/K9C vector-induced conventional memory responses against the immunodominant Gp33/K9C epitope but a strong inflationary response against the Gp34/A8C epitope. These responses showed sustained in vivo function, with complete protection against LCMV infectious challenge. Given the unexpected competition between epitopes seen in the minigene model, we further tested epitope competition using the full-length Ad-LacZ (ß-galactosidase) model. Generation of an Ad-LacZ vector with a single amino acid disruption of the inflationary ß-gal96-103 /D8V epitope transformed the ß-gal497-504 /I8V epitope from conventional to inflationary memory. This work collectively demonstrates the importance of epitope competition within adenoviral vector inserts and is of relevance to future studies using adenoviral vectored immunogens.


Assuntos
Epitopos de Linfócito T/imunologia , Vetores Genéticos/imunologia , Epitopos Imunodominantes/imunologia , Memória Imunológica/imunologia , Adenoviridae/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Virais/imunologia
7.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854295

RESUMO

Phenotypic variation in cultured mammalian cell lines is known to be induced by passaging and culture conditions. Yet, the effect these variations have on the production of viral vectors has been overlooked. In this work we evaluated the impact of using Madin-Darby canine kidney (MDCK) parental cells from American Type Culture Collection (ATCC) or European Collection of Authenticated Cell Cultures (ECACC) cell bank repositories in both adherent and suspension cultures for the production of canine adenoviral vectors type 2 (CAV-2). To further explore the differences between cells, we conducted whole-genome transcriptome analysis. ECACC's MDCK showed to be a less heterogeneous population, more difficult to adapt to suspension and serum-free culture conditions, but more permissive to CAV-2 replication progression, enabling higher yields. Transcriptome data indicated that this increased permissiveness is due to a general down-regulation of biological networks of innate immunity in ECACC cells, including apoptosis and death receptor signaling, Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling, toll-like receptors signaling and the canonical pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. These results show the impact of MDCK source on the outcome of viral-based production processes further elucidating transcriptome signatures underlying enhanced adenoviral replication. Following functional validation, the genes and networks identified herein can be targeted in future engineering approaches aiming at improving the production of CAV-2 gene therapy vectors.


Assuntos
Adenovirus Caninos/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Células Madin Darby de Rim Canino/citologia , Cultura de Vírus/métodos , Animais , Bancos de Espécimes Biológicos , Adesão Celular , Meios de Cultura Livres de Soro , Cães , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células Madin Darby de Rim Canino/classificação , Células Madin Darby de Rim Canino/virologia , Replicação Viral , Sequenciamento do Exoma
8.
Physiol Genomics ; 51(9): 449-461, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398086

RESUMO

A resurgence in the development of newer gene therapy systems has led to recent successes in the treatment of B cell cancers, retinal degeneration and neuromuscular atrophy. Gene therapy offers the ability to treat the patient at the root cause of their malady by restoring normal gene function and arresting the pathological progression of their genetic disease. The current standard of care for most genetic diseases is based upon the symptomatic treatment with polypharmacy while minimizing any potential adverse effects attributed to the off-target and drug-drug interactions on the target or other organs. In the kidney, however, the development of gene therapy modifications to specific renal cells has lagged far behind those in other organ systems. Some positive strides in the past few years provide continued enthusiasm to invest the time and effort in the development of new gene therapy vectors for medical intervention to treat kidney diseases. This mini-review will systematically describe the pros and cons of the most commonly tested gene therapy vector systems derived from adenovirus, retrovirus, and adeno-associated virus and provide insight about their potential utility as a therapy for various types of genetic diseases in the kidney.


Assuntos
Terapia Genética/métodos , Nefropatias/terapia , Adenoviridae/genética , Animais , Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Humanos , Lentivirus/genética , Camundongos , Transdução Genética/métodos
9.
J Transl Med ; 17(1): 175, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126293

RESUMO

BACKGROUND: In non-human primates (NHPs) and humans, partial protection from HIV/SIV infection or suppression of replication is achievable by Env-binding antibodies and Gag-specific CD8+ T-cells targeting protective epitopes. Unfortunately, such T-cell responses are frequently dominated by responses to non-protective, variable epitopes. In this study we attempt to combine three independent approaches, each developed to prevent immunodominance of non-protective epitopes. These approaches were (1) vaccines consisting exclusively of putatively protective p24 Gag highly conserved elements (CEs), (2) vaccines using solely subdominant antigens which were acutely protective in a recent NHP trial, and (3) virus-encoded virus-like particle vaccines (virus-like vaccines/VLVs) using heterologous Env and Gag sequences to enable selection of broadly cross-reactive responses and to avoid immunodominance of non-conserved sequences in prime-boost regimens as previously observed. METHODS: We vaccinated outbred CD1 mice with HIV-1 clade B Gag/Env encoded in an adenoviral prime and SIVmac239 Gag/Env in an MVA boost. We combined this completely heterologous immunization regimen and the homologous SIVmac239 Gag/Env immunization regimen with an additional prime encoding SIV CEs and accessory antigens Rev, Vif and Vpr (Ad-Ii-SIVCErvv). T-cell responses were analyzed by intracellular cytokine staining of splenocytes and antibody responses by trimer-specific ELISA, avidity and isotype-specific ELISA. RESULTS: Env dominance could be avoided successfully in the completely heterologous prime-boost regimen, but Env immunodominance reappeared when Ad-Ii-SIVCErvv was added to the prime. This regimen did however still induce more cross-reactive Gag-specific CD8+ T-cells and Env-specific antibodies. Including Ad-Ii-SIVCErvv in the homologous prime-boost not only elicited accessory antigen-specific CD8+ memory T-cells, but also significantly increased the ratio of Gag- to Env-specific CD8+ T-cells. The CD4+ T-cell response shifted away from structural antigens previously associated with infection-enhancement. CONCLUSION: The homologous Gag/Env prime-boost with Ad-Ii-SIVCErvv prime combined acutely protective CD8+ T-cell responses to subdominant antigens and Env-binding antibodies with chronically protective Gag-specific CD8+ T-cells in outbred mice. This vaccine regimen should be tested in an NHP efficacy trial.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos Virais/imunologia , Infecções por HIV/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Adenoviridae/genética , Animais , Formação de Anticorpos/imunologia , Feminino , Vetores Genéticos/metabolismo , HIV-1/imunologia , Imunização Secundária , Camundongos , Vírus da Imunodeficiência Símia/imunologia
10.
J Inherit Metab Dis ; 42(6): 1128-1135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30724386

RESUMO

The urea cycle and glutamine synthetase (GS) are the two main pathways for waste nitrogen removal and their deficiency results in hyperammonemia. Here, we investigated the efficacy of liver-specific GS overexpression for therapy of hyperammonemia. To achieve hepatic GS overexpression, we generated a helper-dependent adenoviral (HDAd) vector expressing the murine GS under the control of a liver-specific expression cassette (HDAd-GS). Compared to mice injected with a control vector expressing an unrelated reporter gene (HDAd-alpha-fetoprotein), wild-type mice with increased hepatic GS showed reduced blood ammonia levels and a concomitant increase of blood glutamine after intraperitoneal injections of ammonium chloride, whereas blood urea was unaffected. Moreover, injection of HDAd-GS reduced blood ammonia levels at baseline and protected against acute hyperammonemia following ammonia challenge in a mouse model with conditional hepatic deficiency of carbamoyl phosphate synthetase 1 (Cps1), the initial and rate-limiting step of ureagenesis. In summary, we found that upregulation of hepatic GS reduced hyperammonemia in wild-type and Cps1-deficient mice, thus confirming a key role of GS in ammonia detoxification. These results suggest that hepatic GS augmentation therapy has potential for treatment of both primary and secondary forms of hyperammonemia.


Assuntos
Amônia/metabolismo , Terapia Genética/métodos , Glutamato-Amônia Ligase/genética , Hiperamonemia/genética , Hiperamonemia/terapia , Fígado/metabolismo , Amônia/toxicidade , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Glutamato-Amônia Ligase/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos/genética
11.
Cell Physiol Biochem ; 41(6): 2383-2398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28463838

RESUMO

BACKGROUND/AIMS: While recombinant adenoviruses are among the most widely-used gene delivery vectors and usually propagated in HEK-293 cells, generating recombinant adenoviruses remains time-consuming and labor-intense. We sought to develop a rapid adenovirus production and amplification (RAPA) line by assessing human Ad5 genes (E1A, E1B19K/55K, pTP, DBP, and DNA Pol) and OCT1 for their contributions to adenovirus production. METHODS: Stable transgene expression in 293T cells was accomplished by using piggyBac system. Transgene expression was determined by qPCR. Adenoviral production was assessed with titering, fluorescent markers and/or luciferase activity. Osteogenic activity was assessed by measuring alkaline phosphatase activity. RESULTS: Overexpression of both E1A and pTP led to a significant increase in adenovirus amplification, whereas other transgene combinations did not significantly affect adenovirus amplification. When E1A and pTP were stably expressed in 293T cells, the resultant RAPA line showed high efficiency in adenovirus amplification and production. The produced AdBMP9 infected mesenchymal stem cells with highest efficiency and induced most effective osteogenic differentiation. Furthermore, adenovirus production efficiency in RAPA cells was dependent on the amount of transfected DNA. Under optimal transfection conditions high-titer adenoviruses were obtained within 5 days of transfection. CONCLUSION: The RAPA cells are highly efficient for adenovirus production and amplification.


Assuntos
Adenoviridae/fisiologia , Biotecnologia/métodos , Engenharia Genética , Vetores Genéticos/metabolismo , Adenoviridae/genética , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Diferenciação Celular , Linhagem Celular , Citometria de Fluxo , Vetores Genéticos/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
13.
J Transl Med ; 14(1): 343, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27998269

RESUMO

BACKGROUND: A major obstacle for the development of HIV vaccines is the virus' worldwide sequence diversity. Nevertheless, the presence of T cell epitopes within conserved regions of the virus' structural Gag protein and conserved structures in the envelope (env) sequence raises the possibility that cross-reactive responses may be induced by vaccination. In this study, the aim was to investigate the importance of antigenic match on immunodominance and breadth of obtainable T cell responses. METHODS: Outbred CD1 mice were immunized with either heterologous (SIVmac239 and HIV-1 clade B consensus) or homologous (SIVmac239) gag sequences using adenovirus (Ad5) and MVA vectors. Env (SIVmac239) was co-encoded in the vectors to study the induction of antibodies, which is a primary target of current HIV vaccine designs. All three vaccines were designed as virus-encoded virus-like particle vaccines. Antibody responses were analysed by ELISA, avidity ELISA, and neutralization assay. T cell responses were determined by intracellular cytokine staining of splenocytes. RESULTS: The homologous Env/Gag prime-boost regimen induced higher Env binding antibodies, and induced stronger and broader Gag specific CD8+ T cell responses than the homologous Env/heterologous Gag prime-boost regimen. Homologous Env/heterologous Gag immunization resulted in selective boosting of Env specific CD8+ T cell responses and consequently a paradoxical decreased recognition of variant sequences including conserved elements of p24 Gag. CONCLUSIONS: These results contrast with related studies using Env or Gag as the sole antigen and suggest that prime-boost immunizations based on homologous SIVmac239 Gag inserts is an efficient component of genetic VLP vaccines-both for induction of potent antibody responses and cross-reactive CD8+ T cell responses.


Assuntos
Formação de Anticorpos/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Vetores Genéticos/metabolismo , Imunização Secundária , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Animais não Endogâmicos , Anticorpos Antivirais , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunidade Humoral , Interferon gama/metabolismo , Contagem de Linfócitos , Camundongos , Homologia de Sequência de Aminoácidos , Vacinação
14.
J Sep Sci ; 39(22): 4299-4304, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27662513

RESUMO

The serotype specificity of adenovirus ion-exchange chromatography has previously been studied using standard particle-based columns, and the hexon protein has been reported to determine retention time. In this study, we have submitted Adenovirus type 5 recombinants to anion-exchange chromatography using methacrylate monolithic supports. Our experiments with hexon-modified adenoviral vectors show more precisely that the retention time is affected by the substitution of amino acids in hypervariable region 5, which lies within the hexon DE1 loop. By exploring the recombinants modified in the fiber protein, we have proven the previously predicted chromatographic potential of this surface constituent. Modifications that preserve the net charge of the hexon protein, or those that cause only a small charge difference in the fiber protein, in addition to shortening the fiber shaft, did not change the chromatographic behavior of the adenovirus particles. However, modifications that include the deletion of just two negatively charged amino acids in the hexon protein, or the introduction of a heterologous fiber protein, derived from another serotype, revealed recognizable changes in anion-exchange chromatography. This could be useful in facilitating chromatography-approach purification by creating targeted capsid modifications, thereby shifting adenovirus particles away from particular interfering substances present in the crude lysate.


Assuntos
Adenoviridae , Proteínas do Capsídeo/química , Cromatografia por Troca Iônica , Vetores Genéticos , Substituição de Aminoácidos , Cromatografia Líquida de Alta Pressão
15.
Methods ; 69(2): 179-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24561826

RESUMO

Transcription activator-like effector nucleases (TALENs) are designed to cut the genomic DNA at specific chromosomal positions. The resulting DNA double strand break activates cellular repair pathways that can be harnessed for targeted genome modifications. TALENs thus constitute a powerful tool to interrogate the function of DNA sequences within complex genomes. Moreover, their high DNA cleavage activity combined with a low cytotoxicity make them excellent candidates for applications in human gene therapy. Full exploitation of these large and repeat-bearing nucleases in human cell types will benefit largely from using the adenoviral vector (AdV) technology. The genetic stability and the episomal nature of AdV genomes in conjunction with the availability of a large number of AdV serotypes able to transduce various human cell types make it possible to achieve high-level and transient expression of TALENs in numerous target cells, regardless of their mitotic state. Here, we describe a set of protocols detailing the rescue, propagation and purification of TALEN-encoding AdVs. Moreover, we describe procedures for the characterization and quantification of recombinant viral DNA present in the resulting AdV preparations. The protocols are preceded by information about their underlying principles and applied in the context of second-generation capsid-modified AdVs expressing TALENs targeted to the AAVS1 "safe harbor" locus on human chromosome 19.


Assuntos
Adenoviridae/genética , DNA Viral/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , DNA Viral/administração & dosagem , Endonucleases/genética , Vetores Genéticos/administração & dosagem , Células HEK293 , Células HeLa , Humanos
16.
Rev Neurol (Paris) ; 170(12): 727-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25459120

RESUMO

The last decade has nourished strong doubts on the beneficial prospects of gene therapy for curing fatal diseases. However, this climate of reservation is currently being transcended by the publication of several successful clinical protocols, restoring confidence in the appropriateness of therapeutic gene transfer. A strong sign of this present enthusiasm for gene therapy by clinicians and industrials is the market approval of the therapeutic viral vector Glybera, the first commercial product in Europe of this class of drug. This new field of medicine is particularly attractive when considering therapies for a number of neurological disorders, most of which are desperately waiting for a satisfactory treatment. The central nervous system is indeed a very compliant organ where gene transfer can be stable and successful if provided through an appropriate strategy. The purpose of this review is to present the characteristics of the most efficient virus-derived vectors used by researchers and clinicians to genetically modify particular cell types or whole regions of the brain. In addition, we discuss major issues regarding side effects, such as genotoxicity and immune response associated to the use of these vectors.


Assuntos
Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/terapia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Adenoviridae/genética , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Dependovirus/genética , Técnicas de Transferência de Genes/efeitos adversos , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/classificação , Humanos , Lentivirus/genética
17.
J Autoimmun ; 44: 49-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23809878

RESUMO

Autoimmune hepatitis type 2 (AIH-2) is a severe autoimmune liver disease with unknown etiology. We recently developed the CYP2D6 mouse model for AIH-2, in which mice are challenged with an adenovirus (Ad-2D6) expressing human cytochrome P450 2D6 (hCYP2D6), the major autoantigen in AIH-2. Such mice develop chronic hepatitis with cellular infiltrations and generation of hCYP2D6-specific antibodies and T cells. Importantly, the CYP2D6 model represents the only model displaying chronic fibrosis allowing for a detailed investigation of the mechanisms of chronic autoimmune-mediated liver fibrogenesis. We found that hCYP2D6-dependent chronic activation of hepatic stellate cells (HSC) resulted in an increased extracellular matrix deposition and elevated expression of α-smooth muscle actin predominantly in and underneath the liver capsule. The route of Ad-2D6 infection dramatically influenced the activation and trafficking of inflammatory monocytes, NK cells and hCYP2D6-specific T cells. Intraperitoneal Ad-2D6 infection caused subcapsular fibrosis and persistent clustering of inflammatory monocytes. In contrast, intravenous infection caused an accumulation of hCYP2D6-specific CD4 T cells throughout the liver parenchyma and induced a strong NK cell response preventing chronic HSC activation and fibrosis. In summary, we found that the location of the initial site of inflammation and autoantigen expression caused a differential cellular trafficking and activation and thereby determined the outcome of AIH-2-like hepatic damage and fibrosis.


Assuntos
Infecções por Adenoviridae/imunologia , Adenoviridae/imunologia , Autoantígenos/imunologia , Citocromo P-450 CYP2D6/imunologia , Hepatite Autoimune/imunologia , Fígado/imunologia , Actinas/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Fibrose/imunologia , Células Estreladas do Fígado/imunologia , Humanos , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Hepatopatias/imunologia , Camundongos , Monócitos/imunologia
18.
Gynecol Oncol ; 130(3): 518-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756180

RESUMO

OBJECTIVE: The conditionally replicative adenovirus Ad5/3-Δ24 has a type-3 knob incorporated into the type-5 fiber that facilitates enhanced ovarian cancer infectivity. Preclinical studies have shown that Ad5/3-Δ24 achieves significant oncolysis and anti-tumor activity in ovarian cancer models. The purpose of this study was to evaluate in a phase I trial the feasibility and safety of intraperitoneal (IP) Ad5/3-Δ24 in recurrent ovarian cancer patients. METHODS: Eligible patients were treated with IP Ad5/3-Δ24 for 3 consecutive days in one of three dose cohorts ranging 1 × 10(10)-1 × 10(12)vp. Toxicity was assessed utilizing CTC grading and efficacy with RECIST. Ascites, serum, and other samples were obtained to evaluate gene transfer, generation of wildtype virus, viral shedding, and antibody response. RESULTS: Nine of 10 patients completed treatment per protocol. A total of 15 vector-related adverse events were experienced in 5 patients. These events included fever or chills, nausea, fatigue, and myalgia. All were grades 1-2 in nature, transient, and medically managed. Of the 8 treated patients evaluable for response, six patients had stable disease and 2 patients had progressive disease. Three patients had decreased CA-125 from pretreatment levels one month after treatment. Ancillary biologic studies indicated Ad5/3-Δ24 replication in patients in the higher dose cohorts. All patients experienced an anti-adenoviral neutralizing antibody effect. CONCLUSIONS: This study suggests the feasibility and safety of a serotype chimeric infectivity-enhanced CRAd, Ad5/3-Δ24, as a potential therapeutic option for recurrent ovarian cancer patients.


Assuntos
Adenoviridae , Anticorpos Antivirais/sangue , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas/terapia , Adenoviridae/genética , Adenoviridae/fisiologia , Idoso , Idoso de 80 Anos ou mais , Ascite/virologia , Antígeno Ca-125/sangue , Calafrios/virologia , Progressão da Doença , Fadiga/virologia , Feminino , Febre/virologia , Expressão Gênica , Humanos , Dose Máxima Tolerável , Pessoa de Meia-Idade , Náusea/virologia , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/virologia , Tomografia Computadorizada por Raios X , Replicação Viral , Eliminação de Partículas Virais
19.
BioTechnologia (Pozn) ; 104(4): 403-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38213479

RESUMO

New prophylactic vaccine platforms are imperative to combat respiratory infections. The efficacy of T and B memory cell-mediated protection, generated through the adenoviral vector, was tested to assess the effectiveness of the new adenoviral-based platforms for infectious diseases. A combination of adenovirus AdV1 (adjuvant), armed with costimulatory ligands (ICOSL and CD40L), and rRBD (antigen: recombinant nonglycosylated spike protein rRBD) was used to promote the differentiation of T and B lymphocytes. Adenovirus AdV2 (adjuvant), without ligands, in combination with rRBD, served as a control. In vitro T-cell responses to the AdV1+rRBD combination revealed that CD8+ platform-specific T-cells increased (37.2 ± 0.7% vs. 23.1 ± 2.1%), and T-cells acted against SARS-CoV-2 via CD8+TEMRA (50.0 ± 1.3% vs. 36.0 ± 3.2%). Memory B cells were induced after treatment with either AdV1+rRBD (84.1 ± 0.8% vs. 82.3 ± 0.4%) or rRBD (94.6 ± 0.3% vs. 82.3 ± 0.4%). Class-switching from IgM and IgD to isotype IgG following induction with rRBD+Ab was observed. RNA-seq profiling identified gene expression patterns related to T helper cell differentiation that protect against pathogens. The analysis determined signaling pathways controlling the induction of protective immunity, including the MAPK cascade, adipocytokine, cAMP, TNF, and Toll-like receptor signaling pathway. The AdV1+rRBD formulation induced IL-6, IL-8, and TNF. RNA-seq of the VERO E6 cell line showed differences in the apoptosis gene expression stimulated with the platforms vs. mock. In conclusion, AdV1+rRBD effectively generates T and B memory cell-mediated protection, presenting promising results in producing CD8+ platform-specific T cells and isotype-switched IgG memory B cells. The platform induces protective immunity by controlling the Th1, Th2, and Th17 cell differentiation gene expression patterns. Further studies are required to confirm its effectiveness.

20.
Microorganisms ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138078

RESUMO

Mycobacterium tuberculosis is the main causal agent of pulmonary tuberculosis (TB); the treatment of this disease is long and involves a mix of at least four different antibiotics that frequently lead to abandonment, favoring the surge of drug-resistant mycobacteria (MDR-TB), whose treatment becomes more aggressive, being longer and more toxic. Thus, the search for novel strategies for treatment that improves time or efficiency is of relevance. In this work, we used a murine model of pulmonary TB produced by the MDR-TB strain to test the efficiency of gene therapy with adenoviral vectors codifying TNF (AdTNF), a pro-inflammatory cytokine that has protective functions in TB by inducing apoptosis, granuloma formation and expression of other Th1-like cytokines. When compared to the control group that received an adenoviral vector that codifies for the green fluorescent protein (AdGFP), a single dose of AdTNF at the chronic active stage of the disease produced total survival, decreasing bacterial load and tissue damage (pneumonia), which correlated with an increase in cells expressing IFN-γ, iNOS and TNF in pneumonic areas and larger granulomas that efficiently contain and eliminate mycobacteria. Second-line antibiotic treatment against MDR-TB plus AdTNF gene therapy reduced bacterial load faster within a week of treatment compared to empty vector plus antibiotics or antibiotics alone, suggesting that AdTNF is a new potential type of treatment against MDR-TB that can shorten second-line chemotherapy but which requires further experimentation in other animal models (non-human primates) that develop a more similar disease to human pulmonary TB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA