Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Allergy ; 79(2): 294-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37654007

RESUMO

While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Gases, particulate matter, organic compounds but also allergens and viruses, fall within the 'pollutant' definition. Distinct populations, such as children and allergy and asthma sufferers are highly susceptible, while a low socioeconomic background is a further susceptibility factor; however, no specific guidance is available. We spend most of our time indoors; for children, the school environment is of paramount importance and potentially amenable to intervention. The interactions between some pollutant classes have been studied. However, a lot is missing with respect to understanding interactions between specific pollutants of different classes in terms of concentrations, timing and sequence, to improve targeting and upgrade standards. SynAir-G is a European Commission-funded project aiming to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real life, focusing on the school setting. It will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. The aim of this article it to put forward the SynAir-G hypothesis, and describe its background and objectives.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Asma , Poluentes Ambientais , Criança , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado , Asma/epidemiologia , Asma/etiologia , Monitoramento Ambiental
2.
Environ Res ; 247: 117983, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163541

RESUMO

BACKGROUND: Grasses populate most biogeographical zones, and their diversity influences allergic sensitisation to pollen. Previously, the contribution of different Poaceae subfamilies to airborne pollen has mostly been inferred from historical herbarium records. We recently applied environmental (e)DNA metabarcoding at one subtropical site revealing that successive airborne grass pollen peaks were derived from repeated flowering of Chloridoid and Panicoid grasses over a season. This study aimed to compare spatiotemporal patterns in grass pollen exposure across seasons and climate zones. METHODS: Airborne pollen concentrations across two austral pollen seasons spanning 2017-2019 at subtropical (Mutdapilly and Rocklea, Queensland) and temperate (Macquarie Park and Richmond, New South Wales) sites, were determined with a routine volumetric impaction sampler and counting by light microscopy. Poaceae rbcL metabarcode sequences amplified from daily pollen samples collected once per week were assigned to subfamily and genus using a ribosomal classifier and compared with Atlas of Living Australia sighting records. RESULTS: eDNA analysis revealed distinct dominance patterns of grass pollen at various sites: Panicoid grasses prevailed in both subtropical Mutdapilly and temperate Macquarie Park, whilst Chloridoid grasses dominated the subtropical Rocklea site. Overall, subtropical sites showed significantly higher proportion of pollen from Chloridoid grasses than temperate sites, whereas the temperate sites showed a significantly higher proportion of pollen from Pooideae grasses than subtropical sites. Timing of airborne Pooid (spring), Panicoid and Chloridoid (late spring to autumn), and Arundinoid (autumn) pollen were significantly related to number of days from mid-winter. Proportions of eDNA for subfamilies correlated with distributions grass sighting records between climate zones. CONCLUSIONS: eDNA analysis enabled finer taxonomic discernment of Poaceae pollen records across seasons and climate zones with implications for understanding adaptation of grasslands to climate change, and the complexity of pollen exposure for patients with allergic respiratory diseases.


Assuntos
DNA Ambiental , Poaceae , Humanos , Poaceae/genética , Estações do Ano , Alérgenos/análise , Pólen/genética
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33798095

RESUMO

Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown-no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen-virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations.


Assuntos
COVID-19/epidemiologia , Internacionalidade , Pólen/efeitos adversos , COVID-19/virologia , Geografia , Humanos , Estudos Longitudinais , SARS-CoV-2/fisiologia
4.
J Environ Manage ; 351: 119762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081083

RESUMO

Cave heritage is often threatened by tourism or even scientific activities, which can lead to irreversible deterioration. We present a preventive conservation monitoring protocol to protect caves with rock art, focusing on La Garma Cave (Spain), a World Heritage Site with valuable archaeological materials and Palaeolithic paintings. This study assessed the suitability of the cave for tourist use through continuous microclimate and airborne particles monitoring, biofilm analysis, aerobiological monitoring and experimental visits. Our findings indicate several factors that make it inadvisable to adapt the cave for tourist use. Human presence and transit within the cave cause cumulative effects on the temperature of environmentally very stable and fragile sectors and significant resuspension of particles from the cave sediments. These environmental perturbations represent severe impacts as they affect the natural aerodynamic control of airborne particles and determine bacterial dispersal throughout the cave. This monitoring protocol provides part of the evidence to design strategies for sustainable cave management.


Assuntos
Cavernas , Pinturas , Humanos , Cavernas/microbiologia , Espanha , Microclima , Bactérias
5.
J Environ Manage ; 367: 122051, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098080

RESUMO

Platanus sp. pl. (plane trees) are common ornamental tree in Poland that produces a large amount of wind-transported pollen, which contains proteins that induce allergy symptoms. Allergy sufferers can limit their contact with pollen by avoiding places with high pollen concentrations, which are restricted mainly to areas close to plane trees. Their location is thus important, but creating a detailed street tree inventory is expensive and time-consuming. However, high-resolution remote sensing data provide an opportunity to detect the location of specific plants. But acquiring high-resolution spatial data of good quality also incurs costs and requires regular updates. Therefore, this study explored the potential of using open access remote sensing data to detect plane trees in the highly urbanized environment of Poznan (western Poland). Airborne light detection and ranging (LiDAR) was used to detect training treetops, which were subsequently marked as young plane trees, mature plane trees, other trees or artefacts. Spectral and spatial variables were extracted from circular buffers (r = 1 m) around the treetops to minimize the influence of shadows and crown overlap. A random forest machine learning algorithm was applied to assess the importance of variables and classify the treetops within a radius of 6.2 km around the functioning pollen monitoring station. The model performed well during 10-fold cross-validation (overall accuracy ≈ 92%). The predicted Platanus sp. pl. locations, aggregated according to 16 wind directions, were significantly correlated with the hourly pollen concentrations. Based on the correlation values, we established a threshold of prediction confidence, which allowed us to reduce the fraction of false-positive predictions. We proposed the spatially continuous index of airborne pollen exposure probability, which can be useful for allergy sufferers. The results showed that open-access geodata in Poland can be applied to recognize major local sources of plane pollen.


Assuntos
Monitoramento Ambiental , Hipersensibilidade , Pólen , Tecnologia de Sensoriamento Remoto , Árvores , Polônia , Monitoramento Ambiental/métodos , Cidades , Alérgenos/análise , Humanos
6.
Allergy ; 78(8): 2121-2147, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36961370

RESUMO

Limited number of studies have focused on the impact of pollen exposure on asthma. As a part of the EAACI Guidelines on Environment Science, this first systematic review on the relationship of pollen exposure to asthma exacerbations aimed to bridge this knowledge gap in view of implementing recommendations of prevention. We searched electronic iPubMed, Embase, and Web of Science databases using a set of MeSH terms and related synonyms and identified 73 eligible studies that were included for systemic review. When possible, meta-analyses were conducted. Overall meta-analysis suggests that outdoor pollen exposure may have an effect on asthma exacerbation, but caution is needed due to the low number of studies and their heterogeneity. The strongest associations were found between asthma attacks, asthma-related ED admissions or hospitalizations, and an increase in grass pollen concentration in the previous 2-day overall in children aged less than 18 years of age. Tree pollen may increase asthma-related ED visits or admissions lagged up to 7-day overall in individuals younger than 18 years. Rare data show that among subjects under 18 years of age, an exposure to grass pollen lagged up to 3 days may lower lung function. Further research considering effect modifiers of pollen sensitization, hay fever, asthma, air pollution, green spaces, and pre-existing medications is urgently warranted to better evaluate the impacts of pollen on asthma exacerbation. Preventive measures in relation to pollen exposure should be integrated in asthma control as pollen increase continues due to climate change.


Assuntos
Poluição do Ar , Asma , Criança , Humanos , Adolescente , Recém-Nascido , Alérgenos/análise , Pólen , Asma/epidemiologia , Asma/etiologia , Fatores de Risco
7.
Allergy ; 78(3): 629-638, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36588285

RESUMO

Both particulate matter and gaseous components of air pollution have already been shown to increase cardiovascular mortality in numerous studies. It is, however, important to note that on their way to the bloodstream the polluting agents pass the lung barrier. Inside the alveoli, particles of approximately 0.4-1 µm are most efficiently deposited and commonly undergo phagocytosis by lung macrophages. Not only the soluble agents, but also particles fine enough to leave the alveoli enter the bloodstream in this finite part of the endothelium, reaching thus higher concentrations in close proximity of the alveoli and endothelium. Additionally, deposits of particulate matter linger in direct proximity of the endothelial cells and may induce inflammation, immune responses, and influence endothelial barrier dysfunction thus increasing PM bioavailability in positive feedback. The presented discussion provides an overview of possible components of indoor PM and how endothelium is thus influenced, with emphasis on lung vascular endothelium and clinical perspectives.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Endotélio Vascular/química , Células Endoteliais , Pulmão , Material Particulado/efeitos adversos , Poluição do Ar/efeitos adversos , Poeira , Poluentes Atmosféricos/efeitos adversos
8.
Ecol Appl ; 33(3): e2806, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36660794

RESUMO

Invasive species such as insects, pathogens, and weeds reaching new environments by traveling with the wind, represent unquantified and difficult-to-manage biosecurity threats to human, animal, and plant health in managed and natural ecosystems. Despite the importance of these invasion events, their complexity is reflected by the lack of tools to predict them. Here, we provide the first known evidence showing that the long-distance aerial dispersal of invasive insects and wildfire smoke, a potential carrier of invasive species, is driven by atmospheric pathways known as Lagrangian coherent structures (LCS). An aerobiological modeling system combining LCS modeling with species biology and atmospheric survival has the potential to transform the understanding and prediction of atmospheric invasions. The proposed modeling system run in forecast or hindcast modes can inform high-risk invasion events and invasion source locations, making it possible to locate them early, improving the chances of eradication success.


Assuntos
Espécies Introduzidas , Vento , Animais , Humanos , Ecossistema , Plantas Daninhas , Insetos
9.
Environ Sci Technol ; 57(48): 19942-19955, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37943153

RESUMO

Although airborne bacteria and fungi can impact human, animal, plant, and ecosystem health, very few studies have investigated the possible impact of their long-range transport in the context of more commonly measured aerosol species, especially those present in an urban environment. We report first-of-kind simultaneous measurements of the elemental and microbial composition of North American respirable airborne particulate matter concurrent with a Saharan-Sahelian dust episode. Comprehensive taxonomic and phylogenetic profiles of microbial communities obtained by 16S/18S/ITS rDNA sequencing identified hundreds of bacteria and fungi, including several cataloged in the World Health Organization's lists of global priority human pathogens along with numerous other animal and plant pathogens and (poly)extremophiles. While elemental analysis sensitively tracked long-range transported Saharan dust and its mixing with locally emitted aerosols, microbial diversity, phylogeny, composition, and abundance did not well correlate with the apportioned African dust mass. Bacterial/fungal diversity, phylogenetic signal, and community turnover were strongly correlated to apportioned sources (especially vehicular emissions and construction activities) and elemental composition (especially calcium). Bacterial communities were substantially more dissimilar from each other across sampling days than were fungal communities. Generalized dissimilarity modeling revealed that daily compositional turnover in both communities was linked to calcium concentrations and aerosols from local vehicles and Saharan dust. Because African dust is known to impact large areas in northern South America, the Caribbean Basin, and the southern United States, the microbiological impacts of such long-range transport should be assessed in these regions.


Assuntos
Poeira , Ecossistema , Humanos , Animais , Poeira/análise , Texas , Cálcio/análise , Filogenia , Bactérias/genética , Aerossóis/análise , Fungos/genética , Monitoramento Ambiental , Microbiologia do Ar
10.
Food Microbiol ; 114: 104274, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290863

RESUMO

This study aimed to investigate the microbiota in the air and on the surface of a refrigerator and to inactivate aerosolized Staphylococcus aureus using a TiO2-UVLED module. A total of 100 L of the air and 5000 cm2 surfaces in seven household refrigerators were collected using an air sampler and a swab, respectively. Samples were subjected to microbiota analysis as well as quantitative analyses of aerobic or anaerobic bacteria. The level of airborne aerobic bacteria was 4.26 log CFU/vol (100 L), while that of surface aerobic bacteria was 5.27 log CFU/surface (5000 cm2). PCoA based on the Bray-Curtis metric revealed that the bacterial composition differed between samples collected from refrigerators with and without a vegetable drawer. Moreover, pathogenic bacteria containing genera and order from each sample were found, such as Enterobacaterales, Pseudomonas, Staphylococcus, Listeria, and Bacillus. Among them, Staphylococcus aureus was determined to be a core hazardous pathogen in air. Therefore, three S. aureus strains isolated from the air in refrigerators, as well as a reference strain of S. aureus (ATCC 6538P), were inactivated by a TiO2-UVLED module in a 512 L aerobiology chamber. All aerosolized S. aureus were reduced over 1.6 log CFU/vol after treatment with TiO2 under UVA (365 nm) light at 40 J/cm2. These findings suggest that TiO2-UVLED modules have the potential to be used to control airborne bacteria in household refrigerators.


Assuntos
Bactérias , Staphylococcus aureus , Titânio/farmacologia
11.
Int J Biometeorol ; 67(11): 1853-1868, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37718383

RESUMO

Aerobiological studies are still scarce in northwestern Mexico where allergenic pollen have great impacts on health. Current global pollution and climate change problems are closely related to many allergic diseases, enhancing the need to continue researching these issues and improve life quality. This study provides the first Pollen Calendar for Hermosillo, Sonora, México. Airborne pollen were continuously collected for 5 years (2015-2019). The standardized methodology with a Hirst-type spore trap proposed for global aerobiological studies was used. Weather data were also taken from a station located in the city and used to explore correlations between climate and airborne pollen concentrations in different seasons. The most important pollen taxa recorded in air belongs to herbaceous pollen, such as Poaceae, Ambrosia, Asteraceae, Chenopodiaceae-Amaranthaceae, and some shrub trees typical of this arid region, such as Nyctaginaceae, Prosopis, Parkinsonia, and Fabaceae. The most critical herbaceous pollen related to allergies have a long mean pollen season throughout the years, and the most critical periods with high pollen concentration in air occur in two seasons, spring (March-April) and summer-fall (August-October). In these 5 years, the correlation analyses for these two peaks indicate that a link exists between pollen in the air and decreases in precipitation and temperatures, and an increase in relative humidity. An inter-annual variability in pollen concentrations was recorded related to different weather conditions. Although pollen calendars are location-specific, they are useful for future research on biological air quality scenarios in different cities. Using this standardized method for other regions can provide pollen calendars that have been proven clinically important in allergic disease management worldwide.

12.
Plant Dis ; 107(12): 3754-3762, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368443

RESUMO

White mold caused by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary is one of the most important biological constraints to dry bean (Phaseolus vulgaris L.) production in Canada. Disease forecasting is one tool that could help growers manage the disease while reducing fungicide use. However, predicting white mold epidemics has remained difficult due to their sporadic occurrence. In this study, over the course of four growing seasons (2018 to 2021), we surveyed dry bean fields in Alberta and collected daily in-field weather data and daily in-field ascospore counts. White mold levels were variable and generally high in all years, confirming that the disease is ubiquitous and a constant threat to dry bean production. Ascospores were present throughout the growing season, and mean ascospore levels varied by field, month, and year. Models based on in-field weather and ascospore levels were not highly predictive of final disease incidence in a field, suggesting that environment and pathogen presence were not limiting factors to disease development. Rather, significant effects of market class on disease were found, with pinto beans, on average, having the highest disease incidence (33%) followed by great northern (15%), black (10%), red (6%), and yellow (5%). When incidence of these market classes was modeled separately, different environmental variables were important in each model; however, average wind speed was a significant variable in all models. Taken together, these findings suggest that white mold management in dry bean should focus on fungicide use, plant genetics, irrigation management, and other agronomic factors.


Assuntos
Ascomicetos , Fungicidas Industriais , Phaseolus , Alberta , Fungicidas Industriais/farmacologia , Ascomicetos/genética , Phaseolus/microbiologia , Esporos Fúngicos
13.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112159

RESUMO

Late blight, caused by Phytophthora infestans, is a major disease of the potato crop with a strong negative impact on tuber yield and tuber quality. The control of late blight in conventional potato production systems is often through weekly application of prophylactic fungicides, moving away from a sustainable production system. In support of integrated pest management practices, machine learning algorithms were proposed as tools to forecast aerobiological risk level (ARL) of Phytophthora infestans (>10 sporangia/m3) as inoculum to new infections. For this, meteorological and aerobiological data were monitored during five potato crop seasons in Galicia (northwest Spain). Mild temperatures (T) and high relative humidity (RH) were predominant during the foliar development (FD), coinciding with higher presence of sporangia in this phenological stage. The infection pressure (IP), wind, escape or leaf wetness (LW) of the same day also were significantly correlated with sporangia according to Spearman's correlation test. ML algorithms such as random forest (RF) and C5.0 decision tree (C5.0) were successfully used to predict daily sporangia levels, with an accuracy of the models of 87% and 85%, respectively. Currently, existing late blight forecasting systems assume a constant presence of critical inoculum. Therefore, ML algorithms offer the possibility of predicting critical levels of Phytophthora infestans concentration. The inclusion of this type of information in forecasting systems would increase the exactitude in the estimation of the sporangia of this potato pathogen.


Assuntos
Phytophthora infestans , Solanum tuberosum , Algoritmo Florestas Aleatórias , Estações do Ano , Temperatura , Doenças das Plantas
14.
Environ Monit Assess ; 195(6): 706, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212940

RESUMO

Climate and land use changes together are altering the particle content of desert dust storms on regional and local scales. These storms now carry a wide variety of pollutants and pathogens arising from urbanization, industrialization, mass transportation, warfare, or aerosolized waste in locations worldwide where deserts are intertwined with built infrastructure, transportation centers, and high-density human habitation. Accordingly, the modern desert dust storm has an anthropogenic particle load which presumably sets it apart from pre-industrial dust storms. Evidence for how particle content for modern dust storms is changing over the Arabian Peninsula holds relevance because dust storms are now more frequent and more severe. Furthermore, the Arabian Peninsula has asthma rates which are the highest worldwide. How the modern desert dust storm contributes to asthma and human health is a nascent issue. Meanwhile, public health decisions can benefit from a climate × health framework for dust storms, as proposed here. An imperative is testing each dust storm's particle content type, and for this, we propose the A-B-C-X model. Sampling a dust storm for its particle content data and then archiving samples for future analyses is advised. A storm's particle content data, once combined with its atmospheric data, allows a particle's source, transport, and deposition to be determined. In closing, the modern desert dust storm's changing particle content has far-reaching consequences for public health, transboundary issues, and international climate dialog. SIGNIFICANCE : Locally and regionally sourced particle pollution is a growing problem in deserts worldwide. Proposed here is a climate × health framework for studying how dust storm particles, entrained from both natural and engineered systems, may be contributing to declining human respiratory health.


Assuntos
Poluentes Atmosféricos , Asma , Humanos , Monitoramento Ambiental , Clima , Poeira/análise , Poluentes Atmosféricos/análise , Clima Desértico
15.
Am J Bot ; 109(8): 1221-1229, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35903036

RESUMO

PREMISE: Terminal velocity (Vt) is an important factor for the dispersal of biological particles but has scarcely been studied for anemochorous fern spores, and the influence of spore characteristics on Vt has not been evaluated. Here, we measured the Vt of 1234 spores of 18 fern species and two Selaginella microspores using videoimaging analysis and evaluated the effects of mass, size, and ornamentation on Vt. METHODS: We designed a sedimentation tower with a graduated microtelescope attached to a high-speed video camera to record falling particles and measure the Vt of fern spores using video-image processing software. Spores were measured for each species and their size correlated with Vt. RESULTS: The Vt of fern spores ranged from 4.7 cm·s-1 (Cyathea costaricensis) to 18.85 cm·s-1 (Acrostichum danaeifolium). The method is accurate and reliable as predicted by Stokes model for glass beads of known density and size. In addition, Vt had a higher correlation coefficient with mass (ρ = 0.72) than size (ρ = 0.20), and ornamental appendages reduced Vt. CONCLUSIONS: The reported values of Vt of fern spores are within the range of different biological airborne particles such as moss spores and pollen grains of seed plants. The results showed that spore ornamentation is directly related to Vt rather than spore size and may increase or decrease the drag. This method will aid future aerobiological research on biological particles.


Assuntos
Briófitas , Gleiquênias , Selaginellaceae , Esporos
16.
J Appl Microbiol ; 132(2): 1489-1495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34411388

RESUMO

AIM: The air indoors has profound health implications as it can expose us to pathogens, allergens and particulates either directly or via contaminated surfaces. There is, therefore, an upsurge in marketing of air decontamination technologies, but with no proper validation of their claims. We addressed the gap through the construction and use of a versatile room-sized (25 m3 ) chamber to study airborne pathogen survival and inactivation. METHODS AND RESULTS: Here, we report on the quantitative recovery and detection of an enveloped (Phi6) and a non-enveloped bacteriophage (MS2). The two phages, respectively, acted as surrogates for airborne human pathogenic enveloped (e.g., influenza, Ebola and coronavirus SARS-CoV-2) and non-enveloped (e.g., norovirus) viruses from indoor air deposited directly on the lawns of their respective host bacteria using a programmable slit-to-agar air sampler. Using this technique, two different devices based on HEPA filtration and UV light were tested for their ability to decontaminate indoor air. This safe, relatively simple and inexpensive procedure augments the use of phages as surrogates for the study of airborne human and animal pathogenic viruses. CONCLUSIONS: This simple, safe and relatively inexpensive method of direct recovery and quantitative detection of viable airborne phage particles can greatly enhance their applicattion as surrogates for the study of vertebrate virus survival in indoor air and assessment of technologies for their decontamination. SIGNIFICANCE AND IMPACT OF THE STUDY: The safe, economical and simple technique reported here can be applied widely to investigate the role of indoor air for virus survival and transmission and also to assess the potential of air decontaminating technologies.


Assuntos
Poluição do Ar em Ambientes Fechados , Bacteriófagos , COVID-19 , Vírus , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Animais , Humanos , SARS-CoV-2 , Vertebrados
17.
Environ Res ; 214(Pt 1): 113762, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779617

RESUMO

BACKGROUND: Allergic rhinitis affects half a billion people globally, including a fifth of the Australian population. As the foremost outdoor allergen source, ambient grass pollen exposure is likely to be altered by climate change. The AusPollen Partnership aimed to standardize pollen monitoring and examine broad-scale biogeographical and meteorological factors influencing interannual variation in seasonality of grass pollen aerobiology in Australia. METHODS: Daily airborne grass and other pollen concentrations in four eastern Australian cities separated by over 1700 km, were simultaneously monitored using Hirst-style samplers following the Australian Interim Pollen and Spore Monitoring Standard and Protocols over four seasons from 2016 to 2020. The grass seasonal pollen integral was determined. Gridded rainfall, temperature, and satellite-derived grassland sources up to 100 km from the monitoring site were analysed. RESULTS: The complexity of grass pollen seasons was related to latitude with multiple major summer-autumn peaks in Brisbane, major spring and minor summer peaks in Sydney and Canberra, and single major spring peaks occurring in Melbourne. The subtropical site of Brisbane showed a higher proportion of grass out of total pollen than more temperate sites. The magnitude of the grass seasonal pollen integral was correlated with pasture greenness, rainfall and number of days over 30 °C, preceding and within the season, up to 100 km radii from monitoring sites. CONCLUSIONS: Interannual fluctuations in Australian grass pollen season magnitude are strongly influenced by regional biogeography and both pre- and in-season weather. This first continental scale, Southern Hemisphere standardized aerobiology dataset forms the basis to track shifts in pollen seasonality, biodiversity and impacts on allergic respiratory diseases.


Assuntos
Alérgenos , Pólen , Austrália , Humanos , Conceitos Meteorológicos , Poaceae , Estações do Ano
18.
Agric For Meteorol ; 323: 109034, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36003366

RESUMO

Considerable amounts of starch granules can be present in the atmosphere from both natural and anthropogenic sources. The aim of this study is to investigate the variability and potential origin of starch granules in ambient air recorded at six cities situated in a region with dominantly agricultural land use. This is achieved by using a combination of laser spectroscopy bioaerosol measurements with 1 min temporal resolution, traditional volumetric Hirst type bioaerosol sampling and atmospheric modelling. The analysis of wind roses identified potential sources of airborne starch (i.e., cereal grain storage facilities) in the vicinity of all aerobiological stations analysed in this study. The analysis of the CALPUFF dispersion model confirmed that emission of dust from the location of storage towers situated about 2.5 km north of the aerobiological station in Novi Sad is a plausible source of high airborne concentrations of starch granules. This study is important for environmental health since it contributes body of knowledge about sources, emission, and dispersion of airborne starch, known to be involved in phenomena such as thunderstorm-triggered asthma. The presented approach integrates monitoring and modelling, and provides a roadmap for examining a variety of bioaerosols previously considered to be outside the scope of traditional aerobiological measurements.

19.
Int J Biometeorol ; 66(6): 1173-1187, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35275236

RESUMO

Precipitation is one of the meteorological variables usually involved in the aerobiological studies, which presents a complex relationship with atmospheric levels of pollen and fungal spores and the temporal characteristics of their seasons. This complexity is due in a large part to rainfall's twofold impact of having, prior to pollination, a positive influence on subsequent pollen production and of contributing, during pollination, to pollen removal from the air through a wash-out effect. To better explore this impact, we place particular emphasis on extreme rainfall by calculating the correlation between airborne pollen and fungal spore parameters and the precipitation indices that the Expert Team on Climate Change Detection and Indices (ETCCDI) proposed for characterising climate extremes. Parameters for twenty-seven pollen and fungal spore taxa measured in six aerobiological stations in the NE Iberian Peninsula have been considered. We have distinguished between annual and winter ETCCDI in order to compare the correlations between extreme rainfall and airborne pollen concentrations and to avoid the wash-out effect as far as possible. Results show a positive influence from an increase in moderately extreme winter rainfall, specifically on subsequent pollen/fungal spore production: the percentage of all possible significant correlations is higher for winter than for annual rainfall. Furthermore, while annual rainfall in this region has nearly the same number of positive as negative correlations, the positive correlations for winter rainfall are more than twice that of the negative ones. The seasonal consideration on rainfall ETCCDI made with the aim to avoid the confounding overlapping of different rainfall impacts has led to more sharpened observations of its positive and negative effects on airborne pollen and fungal spore concentrations.


Assuntos
Poluentes Atmosféricos , Alérgenos , Poluentes Atmosféricos/análise , Alérgenos/análise , Monitoramento Ambiental , Meteorologia , Pólen , Estações do Ano , Esporos Fúngicos
20.
Sensors (Basel) ; 22(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36146412

RESUMO

Secondary infections of early blight during potato crop season are conditioned by aerial inoculum. However, although aerobiological studies have focused on understanding the key factors that influence the spore concentration in the air, less work has been carried out to predict when critical concentrations of conidia occur. Therefore, the goals of this study were to understand the key weather variables that affect the hourly and daily conidia dispersal of Alternaria solani and A. alternata in a potato field, and to use these weather factors in different machine learning (ML) algorithms to predict the daily conidia levels. This study showed that conidia per hour in a day is influenced by the weather conditions that characterize the hour, but not the hour of the day. Specifically, the relative humidity and solar radiation were the most relevant weather parameters influencing the conidia concentration in the air and both in a linear model explained 98% of the variation of this concentration per hour. Moreover, the dew point temperature three days before was the weather variable with the strongest effect on conidia per day. An improved prediction of Alternaria conidia level was achieved via ML algorithms when the conidia of previous days is considered in the analysis. Among the ML algorithms applied, the CART model with an accuracy of 86% were the best to predict daily conidia level.


Assuntos
Alternaria , Solanum tuberosum , Algoritmos , Aprendizado de Máquina , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA