Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.195
Filtrar
1.
EMBO J ; 41(21): e111084, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36121025

RESUMO

Alzheimer's disease (AD) pathogenesis has been linked to the accumulation of longer, aggregation-prone amyloid ß (Aß) peptides in the brain. Γ-secretases generate Aß peptides from the amyloid precursor protein (APP). Γ-secretase modulators (GSMs) promote the generation of shorter, less-amyloidogenic Aßs and have therapeutic potential. However, poorly defined drug-target interactions and mechanisms of action have hampered their therapeutic development. Here, we investigate the interactions between the imidazole-based GSM and its target γ-secretase-APP using experimental and in silico approaches. We map the GSM binding site to the enzyme-substrate interface, define a drug-binding mode that is consistent with functional and structural data, and provide molecular insights into the underlying mechanisms of action. In this respect, our analyses show that occupancy of a γ-secretase (sub)pocket, mediating binding of the modulator's imidazole moiety, is sufficient to trigger allosteric rearrangements in γ-secretase as well as stabilize enzyme-substrate interactions. Together, these findings may facilitate the rational design of new modulators of γ-secretase with improved pharmacological properties.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidores e Moduladores de Secretases gama , Doença de Alzheimer/metabolismo , Imidazóis/uso terapêutico
2.
J Cell Sci ; 137(8)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668720

RESUMO

Amyloid ß (Aß) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aß disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aß oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aß mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aß enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aß-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aß-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aß, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Hipocampo , Potenciação de Longa Duração , Microdomínios da Membrana , Receptores de AMPA , Peptídeos beta-Amiloides/metabolismo , Receptores de AMPA/metabolismo , Microdomínios da Membrana/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Hipocampo/metabolismo , Gangliosídeo G(M1)/metabolismo , Humanos , Neurônios/metabolismo , Ratos , Camundongos , Transporte Proteico
3.
Brain ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259179

RESUMO

Positive effects of new anti-amyloid-ß (Aß) monoclonal antibodies in Alzheimer's disease (AD) have been attributed to brain amyloid reduction. However, most anti-Aß antibodies also increase the CSF levels of the 42-amino acid isoform (Aß42). We evaluated the associations of changes in CSF Aß42 and brain Aß-PET with cognitive and clinical end points in randomized trials of anti-Aß drugs that lowered (ß- and γ-secretase inhibitors) or increased CSF Aß42 levels (anti-Aß monoclonal antibodies) to test the hypothesis that post-treatment increases in CSF Aß42 levels are independently associated with cognitive and clinical outcomes. From long-term (≥12 months) randomized placebo-controlled clinical trials of anti-Aß drugs published until November 2023, we calculated the post-treatment versus baseline difference in ADAS-Cog (cognitive subscale of the Alzheimer's Disease Assessment Scale) and CDR-SB (Clinical Dementia Rate-Sum of Boxes) and z-standardized changes in CSF Aß42 and Aß-PET Centiloids (CL). We estimated the effect size [regression coefficients (RCs) and confidence intervals (CIs)] and the heterogeneity (I2) of the associations between AD biomarkers and cognitive and clinical end points using random-effects meta-regression models. We included 25 966 subjects with AD from 24 trials. In random-effects analysis, increases in CSF Aß42 were associated with slower decline in ADAS-Cog (RC: -0.55; 95% CI: -0.89, -0.21, P = 0.003, I2 = 61.4%) and CDR-SB (RC: -0.16; 95% CI: -0.26, -0.06, P = 0.002, I2 = 34.5%). Similarly, decreases in Aß-PET were associated with slower decline in ADAS-Cog (RC: 0.69; 95% CI: 0.48, 0.89, P < 0.001, I2 = 0%) and CDR-SB (RC: 0.26; 95% CI: 0.18, 0.33, P < 0.001, I2 = 0%). Sensitivity analyses yielded similar results. Higher CSF Aß42 levels after exposure to anti-Aß drugs are independently associated with slowing cognitive impairment and clinical decline. Increases in Aß42 may represent a mechanism of potential benefit of anti-Aß monoclonal antibodies in AD.

4.
Exp Cell Res ; 436(1): 113958, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325585

RESUMO

Cerebral amyloid angiopathy (CAA) is a disease in which amyloid ß (Aß) is deposited in the cerebral blood vessels, reducing compliance, tearing and weakening of vessel walls, leading to cerebral hemorrhage. The mechanisms by which Aß leads to focal wall fragmentation and intimal damage are not well understood. We analyzed the motility of human brain microvascular endothelial cells (hBMECs) in real-time using a wound-healing assay. We observed the suppression of cell migration by visualizing Aß aggregation using quantum dot (QD) nanoprobes. In addition, using QD nanoprobes and a SiR-actin probe, we simultaneously observed Aß aggregation and F-actin organization in real-time for the first time. Aß began to aggregate at the edge of endothelial cells, reducing cell motility. In addition, Aß aggregation disorganized the actin cytoskeleton and induced abnormal actin aggregation. Aß aggregated actively in the anterior group, where cell motility was active. Our findings may be a first step toward explaining the mechanism by which Aß causes vascular wall fragility, bleeding, and rebleeding in CAA.


Assuntos
Peptídeos beta-Amiloides , Células Endoteliais , Humanos , Peptídeos beta-Amiloides/farmacologia , Actinas , Encéfalo , Citoesqueleto de Actina
5.
Cell Mol Life Sci ; 81(1): 377, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212733

RESUMO

Lewy body diseases (LBD) comprise a group of complex neurodegenerative conditions originating from accumulation of misfolded alpha-synuclein (α-syn) in the form of Lewy bodies. LBD pathologies are characterized by α-syn deposition in association with other proteins such as Amyloid ß (Aß), Tau, and TAR-DNA-binding protein. To investigate the complex interactions of these proteins, we constructed 2 novel transgenic overexpressing (OE) C. elegans strains (α-synA53T;Taupro-agg (OE) and α-synA53T;Aß1-42;Taupro-agg (OE)) and compared them with previously established Parkinson's, Alzheimer's, and Lewy Body Dementia disease models. The LBD models presented here demonstrate impairments including uncoordinated movement, egg-laying deficits, altered serotonergic and cholinergic signaling, memory and posture deficits, as well as dopaminergic neuron damage and loss. Expression levels of total and prone to aggregation α-syn protein were increased in α-synA53T;Aß1-42 but decreased in α-synA53T;Taupro-agg animals when compared to α-synA53T animals suggesting protein interactions. These alterations were also observed at the mRNA level suggesting a pre-transcriptional mechanism. miRNA-seq revealed that cel-miR-1018 was upregulated in LBD models α-synA53T, α-synA53T;Aß1-42, and α-synA53T;Taupro-agg compared with WT. cel-miR-58c was upregulated in α-synA53T;Taupro-agg but downregulated in α-synA53T and α-synA53T;Aß1-42 compared with WT. cel-miR-41-3p and cel-miR-355-5p were significantly downregulated in 3 LBD models. Our results obtained in a model organism provide evidence of interactions between different pathological proteins and alterations in specific miRNAs that may further exacerbate or ameliorate LBD pathology.


Assuntos
Peptídeos beta-Amiloides , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Doença por Corpos de Lewy , MicroRNAs , alfa-Sinucleína , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
6.
Mol Cell Neurosci ; 128: 103916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244652

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that develops over decades. Glial cells, including astrocytes are tightly connected to the AD pathogenesis, but their impact on disease progression is still unclear. Our previous data show that astrocytes take up large amounts of aggregated amyloid-beta (Aß) but are unable to successfully degrade the material, which is instead stored intracellularly. The aim of the present study was to analyze the astrocytic Aß deposits composition in detail in order to understand their role in AD propagation. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aß42 fibrils and magnetic beads. Live cell imaging and immunocytochemistry confirmed that the ingested Aß aggregates and beads were transported to the same lysosomal compartments in the perinuclear region, which allowed us to successfully isolate the Aß deposits from the astrocytes. Using a battery of experimental techniques, including mass spectrometry, western blot, ELISA and electron microscopy we demonstrate that human astrocytes truncate and pack the Aß aggregates in a way that makes them highly resistant. Moreover, the astrocytes release specifically truncated forms of Aß via different routes and thereby expose neighboring cells to pathogenic proteins. Taken together, our study establishes a role for astrocytes in mediating Aß pathology, which could be of relevance for identifying novel treatment targets for AD.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Astrócitos/metabolismo , Células Cultivadas , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo
7.
J Infect Dis ; 230(Supplement_2): S165-S172, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255396

RESUMO

BACKGROUND: Toxoplasma gondii infection of Alzheimer's disease model mice decreases amyloid ß plaques. We aimed to determine if there is a brain regional difference in amyloid ß reduction in the brains of T. gondii-infected compared to control mice. METHOD: Three-month-old 5xFAD (AD model) mice were injected with T. gondii or with phosphate-buffered saline as a control. Intact brains were harvested at 6 weeks postinfection, optically cleared using iDISCO+, and brain-wide amyloid burden was visualized using volumetric light-sheet imaging. Amyloid signal was quantified across each brain and computationally mapped to the Allen Institute Brain Reference Atlas to determine amyloid density in each region. RESULTS: A brain-wide analysis of amyloid in control and T. gondii-infected 5xFAD mice revealed that T. gondii infection decreased amyloid burden in the brain globally as well as in the cortex and hippocampus, and many daughter regions. Daughter regions that showed reduced amyloid burden included the prelimbic cortex, visual cortex, and retrosplenial cortex. The olfactory tubercle, a region known to have increased monocytes following T. gondii infection, also showed reduced amyloid after infection. CONCLUSIONS: T. gondii infection of AD mice reduces amyloid burden in a brain region-specific manner that overlaps with known regions of T. gondii infection and peripheral immune cell infiltration.


Assuntos
Doença de Alzheimer , Encéfalo , Modelos Animais de Doenças , Camundongos Transgênicos , Toxoplasma , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/parasitologia , Doença de Alzheimer/patologia , Camundongos , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Toxoplasmose/metabolismo , Feminino
8.
J Neurosci ; 43(43): 7226-7241, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37699718

RESUMO

The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-ß/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aß fibril formation in vitro, and IRS-2 deficiency suppressed the aggregation process of Aß in the brains of male APP transgenic mice as revealed by injection of aggregation seeds in vivo Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aß aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENT The insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-ß/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aß fibrils. This study presents a novel mechanism by which IIS regulates Aß accumulation, which may involve altered brain ECM expression.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Insulina , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
9.
J Neurosci ; 43(47): 7894-7898, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37968119

RESUMO

Alzheimer's disease (AD) is the major cause of dementia that is now threatening the lives of billions of elderly people on the globe, and recent progress in the elucidation of the pathomechanism of AD is now opening venue to tackle the disease by developing and implementing "disease-modifying therapies" that directly act on the pathophysiology and slow down the progression of neurodegeneration. A recent example is the success of clinical trials of anti-amyloid b antibody drugs, whereas other therapeutic targets, e.g., inflammation and tau, are being actively investigated. In this dual perspective session, we plan to have speakers from leading pharmas in the field representing distinct investments in the AD space, which will be followed by the comment from scientific leadership of the Alzheimer's Association who will speak on behalf of all stakeholders. Neuroscientists participating in the Society for Neuroscience may be able to gain insights into the cutting edge of the therapeutic approaches to AD and neurodegenerative disorders, and discuss future contribution of neuroscience to this field.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Inflamação/tratamento farmacológico , Proteínas tau
10.
J Neurosci ; 43(32): 5870-5879, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491315

RESUMO

Amyloid ß protein (Aß) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aß aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins. Here, we explore how intracerebral injection of Aß and tau present in such aqueous extracts of patient brain contribute to disruption of synaptic plasticity in the CA1 area of the male rat hippocampus. Aqueous extracts of certain AD brains acutely inhibited long-term potentiation (LTP) of synaptic transmission in a manner that required both Aß and tau. Tau-containing aqueous extracts of a brain from a patient with Pick's disease (PiD) also impaired LTP, and diffusible tau from either AD or PiD brain lowered the threshold for AD brain Aß to inhibit LTP. Remarkably, the disruption of LTP persisted for at least 2 weeks after a single injection. These findings support a critical role for diffusible tau in causing rapid onset, persistent synaptic plasticity deficits, and promoting Aß-mediated synaptic dysfunction.SIGNIFICANCE STATEMENT The microtubule-associated protein tau forms relatively insoluble fibrillar deposits in the brains of people with neurodegenerative diseases including Alzheimer's and Pick's diseases. More soluble aggregates of disease-associated tau may diffuse between cells and could cause damage to synapses in vulnerable circuits. We prepared aqueous extracts of diseased cerebral cortex and tested their ability to interfere with synaptic function in the brains of live rats. Tau in these extracts rapidly and persistently disrupted synaptic plasticity and facilitated impairments caused by amyloid ß protein, the other major pathologic protein in Alzheimer's disease. These findings show that certain diffusible forms of tau can mediate synaptic dysfunction and may be a target for therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Masculino , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Potenciação de Longa Duração , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo
11.
J Lipid Res ; 65(3): 100510, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280459

RESUMO

The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid ß (Aß)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aß uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aß production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/metabolismo
12.
Genes Cells ; 28(4): 319-325, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719634

RESUMO

We investigated the alterations in autophagy-related molecules in neurons differentiated from induced pluripotent stem cells obtained from patients with Alzheimer's disease (AD). Consistent with our previous microarray data, ATG4A protein was upregulated in the neurons derived from a familial AD patient with an APP-E693Δ mutation who showed accumulation of intracellular amyloid ß peptide (Aß). This upregulation was reversed by inhibiting Aß production, suggesting that the intracellular Aß may be responsible for the upregulation of ATG4A. The LC3B-II/LC3B-I ratio, an index of autophagosome formation, was lower in the neurons derived from the AD patient with APP-E693Δ as well as the neurons derived from other familial and sporadic AD patients. These findings indicate that dysregulation of autophagy-related molecules may accelerate the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neurônios/metabolismo
13.
Acta Neuropathol ; 147(1): 39, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347288

RESUMO

Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid ß (Aß), hyperphosphorylated Tau or α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenerative diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aß, Tau and α-syn species. While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cellular and molecular mechanisms driving Aß, Tau and α-syn-related brain damage remain to be fully clarified. In the last few years, studies have shown that Aß, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting blood-brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation and dysfunction. Here, we summarize and critically discuss key findings showing how Aß, Tau and α-syn can contribute to BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis and treatment of acute and chronic neurological disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Acidente Vascular Cerebral , Humanos , alfa-Sinucleína/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Células Endoteliais/patologia , Doenças Neurodegenerativas/patologia , Acidente Vascular Cerebral/patologia , Proteínas tau/metabolismo
14.
Acta Neuropathol ; 147(1): 94, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833073

RESUMO

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.


Assuntos
Doença de Alzheimer , Encéfalo , Progressão da Doença , Receptores ErbB , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Solubilidade , Proteínas tau/metabolismo , Proteínas tau/genética
15.
Chemistry ; : e202401531, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899478

RESUMO

Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid ß (Aß) peptide in extracellular deposits generated upon proteolysis of Amyloid Precursor Protein (APP). While copper (Cu(II)) binds to Aß in soluble oligomeric and aggregated forms, its interaction with membrane-bound Aß remains elusive. Investigating these interactions is crucial for understanding AD pathogenesis. Here, utilizing SDS micelles as a simplified membrane mimic, we focus on elucidating the interplay between membrane-anchored Aß and copper, given their pivotal roles in AD. We employed spectroscopic techniques including UV, CD, and EPR to characterize the active site of Cu-Aß complexes. Our findings demonstrate that copper interacts with Aß peptides in membrane-mimicking micellar environments similarly to aqueous buffer solutions. Cu-Aß complexes in this medium also induce higher hydrogen peroxide (H2O2) production, potentially contributing to AD-related oxidative stress. Moreover, we observe an increased oxidation rate of neurotransmitter such as dopamine by Cu-Aß complexes. These results enhance our understanding of Cu-Aß interactions in AD pathology and offer insights into potential therapeutic interventions targeting this interaction.

16.
Exp Eye Res ; 242: 109861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522635

RESUMO

Amyloid-beta (Aß), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aß42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aß42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aß-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aß42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aß, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aß42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aß42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aß42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aß42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aß42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aß42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aß42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aß42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aß42 in the retina and suggest concepts on the molecular mechanism of Aß retinal pathogenicity.


Assuntos
Peptídeos beta-Amiloides , Eletrorretinografia , Proteínas do Olho , Fatores de Crescimento Neural , Serpinas , Animais , Serpinas/metabolismo , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Ratos , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Fragmentos de Peptídeos/toxicidade , Modelos Animais de Doenças , Receptores de Laminina/metabolismo , Masculino , Retina/efeitos dos fármacos , Retina/metabolismo , Humanos , Injeções Intravítreas , Western Blotting , Doenças Retinianas/prevenção & controle , Doenças Retinianas/metabolismo , Doenças Retinianas/induzido quimicamente , Células Cultivadas
17.
Brain Behav Immun ; 121: 365-383, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084541

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) plaques, neuroinflammation, and neuronal death. Besides aging, various comorbidities increase the risk of AD, including obesity, diabetes, and allergic asthma. Epidemiological studies have reported a 2.17-fold higher risk of dementia in asthmatic patients. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown. This study was designed to explore house dust mite (HDM)-induced asthma effects on AD-related brain changes using the AppNL-G-F transgenic mouse model of disease. Male and female 8-9 months old C57BL/6J wild type and AppNL-G-F mice were exposed to no treatment, saline sham, or HDM extract every alternate day for 16 weeks for comparison across genotypes and treatment. Mice were euthanized at the end of the experiment, and broncho-alveolar lavage fluid (BALF), blood, lungs, and brains were collected. BALF was used to quantify immune cell phenotype, cytokine levels, total protein content, lactate dehydrogenase (LDH) activity, and total IgE. Lungs were sectioned and stained with hematoxylin and eosin, Alcian blue, and Masson's trichrome. Serum levels of cytokines and soluble Aß1-40/42 were quantified. Brains were sectioned and immunostained for Aß, GFAP, CD68, and collagen IV. Finally, frozen hippocampi and temporal cortices were used to perform Aß ELISAs and cytokine arrays, respectively. HDM exposure led to increased levels of inflammatory cells, cytokines, total protein content, LDH activity, and total IgE in the BALF, as well as increased pulmonary mucus and collagen staining in both sexes and genotypes. Levels of serum cytokines increased in all HDM-exposed groups. Serum from the AppNL-G-F HDM-induced asthma group also had significantly increased soluble Aß1-42 levels in both sexes. In agreement with this peripheral change, hippocampi from asthma-induced male and female AppNL-G-F mice demonstrated elevated Aß plaque load and increased soluble Aß 1-40/42 and insoluble Aß 1-40 levels. HDM exposure also increased astrogliosis and microgliosis in both sexes of AppNL-G-F mice, as indicated by GFAP and CD68 immunoreactivity, respectively. Additionally, HDM exposure elevated cortical levels of several cytokines in both sexes and genotypes. Finally, HDM-exposed groups also showed a disturbed blood-brain-barrier (BBB) integrity in the hippocampus of AppNL-G-F mice, as indicated by decreased collagen IV immunoreactivity. HDM exposure was responsible for an asthma-like condition in the lungs that exacerbated Aß pathology, astrogliosis, microgliosis, and cytokine changes in the brains of male and female AppNL-G-F mice that correlated with reduced BBB integrity. Defining mechanisms of asthma effects on the brain may identify novel therapeutic targets for asthma and AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Asma , Encéfalo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pyroglyphidae , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Asma/metabolismo , Asma/imunologia , Feminino , Camundongos , Peptídeos beta-Amiloides/metabolismo , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Pyroglyphidae/imunologia , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo
18.
Neurochem Res ; 49(1): 199-211, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702891

RESUMO

Activation of glial cells, astrocytes and microglia, has been observed in neurodegenerative diseases including Alzheimer's disease (AD). Amyloid ß (Aß), which is aggregated and the aggregation is detected as characteristic pathology in AD brain, is known to be produced by neurons and to activate glial cells. Clearance of Aß from the brain via active transport system is important to prevent the accumulation and aggregation. Low density lipoprotein receptor-related protein 2 (LRP2/megalin) is an Aß transporter. However, expression and contribution of LRP2 in astrocytes and microglia remain to be clarified. In the present study, we examined the expression of LRP2 and its roles in cultured astrocytes prepared from rat embryonic brain cortex and mouse microglial cell line BV-2. Both cultured rat astrocytes and BV-2 cells expressed LRP2 mRNA detected by RT-PCR. When lipopolysaccharide (LPS) or all-trans retinoic acid (ATRA) were added to BV-2 cells, LRP2 mRNA expression and uptake of microbeads, Aß and insulin were increased. On the other hand, LPS decreased LRP2 expression and uptake of Aß and insulin in cultured astrocytes. Knockdown of LRP2 using siRNA attenuated the LPS- or ATRA-increased uptake of microbeads, Aß and insulin in BV-2 cells. These results suggest that LRP2 was expressed in both astrocytes and microglia and might be involved in endocytosis activities. Adequate control of LRP2 expression and function in astrocytes and microglia might regulate Aß and insulin levels in brain and would be a potential target in AD pathology.


Assuntos
Doença de Alzheimer , Insulinas , Ratos , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/metabolismo , RNA Mensageiro/metabolismo , Insulinas/metabolismo , Células Cultivadas
19.
Mol Cell Biochem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970706

RESUMO

Alzheimer's disease (AD) progression is closely linked to the propagation of pathological Amyloid ß (Aß), a process increasingly understood to involve extracellular vesicles (EVs), namely exosomes. The specifics of Aß packaging into exosomes remain elusive, although evidence suggests an ESCRT (Endosomal Sorting Complex Required for Transport)-independent origin to be responsible in spreading of AD pathogenesis. Intriguingly, PrPC, known to influence exosome abundance and bind oligomeric Aß (oAß), can be released in exosomes via both ESCRT-dependent and ESCRT-independent pathways, raising questions about its role in oAß trafficking. Thus, we quantified Aß levels within EVs, cell medium, and intracellularly, alongside exosome biogenesis-related proteins, following deletion or overexpression of PrPC. The same parameters were also evaluated in the presence of specific exosome inhibitors, namely Manumycin A and GW4869. Our results revealed that deletion of PrPC increases intracellular Aß accumulation and amplifies EV abundance, alongside significant changes in cellular levels of exosome biogenesis-related proteins Vps25, Chmp2a, and Rab31. In contrast, cellular expression of PrPC did not alter exosomal Aß levels. This highlights PrPC's influence on exosome biogenesis, albeit not in direct Aß packaging. Additionally, our data confirm the ESCRT-independent exosome release of Aß and we show a direct reduction in Chmp2a levels upon oAß challenge. Furthermore, inhibition of opposite exosome biogenesis pathway resulted in opposite cellular PrPC levels. In conclusion, our findings highlight the intricate relationship between PrPC, exosome biogenesis, and Aß release. Specifically, they underscore PrPC's critical role in modulating exosome-associated proteins, EV abundance, and cellular Aß levels, thereby reinforcing its involvement in AD pathogenesis.

20.
Bioorg Med Chem Lett ; 107: 129788, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740144

RESUMO

Effectively inhibition of amyloid ß (Aß) aggregation is considered an important method for treatment of the Alzheimer's disease. Herein, inspired by the ability of trans-clovamide to effectively inhibit Aß aggregation, we synthesized a series of structurally related catecholamine derivatives and tested them as Aß aggregation inhibitors using the Thioflavin T assay. The results show that they demonstrated a higher inhibitory rate against Aß aggregation. Furthermore, these compounds exhibited high water solubilities and low cytotoxicities. Additionally, transmission electron microscopy images and dynamic light scattering of their Aß aggregations were observed. Docking simulations revealed that the catechol moiety of the synthesized compounds can form hydrogen bonds with the key regions of Aß and thereby inhibit Aß aggregation.


Assuntos
Peptídeos beta-Amiloides , Catecolaminas , Simulação de Acoplamento Molecular , Agregados Proteicos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Catecolaminas/metabolismo , Humanos , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA