Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Invest New Drugs ; 40(4): 728-737, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35477813

RESUMO

Pancreatic cancer is one of the most lethal human neoplasms, and despite advances in the understanding of the molecular complexity involved in the development and progression of this disease, little of this new information has been translated into improvements in therapy and prognosis. Ezrin (EZR) is a protein that regulates multiple cellular functions, including cell proliferation, survival, morphogenesis, adhesion, and motility. In pancreatic cancer, EZR is highly expressed and reflects an unfavorable prognosis, whereas EZR silencing ameliorates the malignant phenotype of pancreatic cancer cells. NSC305787 was identified as a pharmacological EZR inhibitor with favorable pharmacokinetics and antineoplastic activity. Here, we endeavored to investigate the impact of EZR expression on survival outcomes and its associations with molecular and biological characteristics in The Cancer Genome Atlas pancreatic adenocarcinoma cohort. We also assessed the potential antineoplastic effects of NSC305787 in pancreatic cancer cell lines. High EZR expression was an independent predictor of worse survival outcomes. Functional genomics analysis indicated that EZR contributes to multiple cancer-related pathways, including PI3K/AKT/mTOR signaling, NOTCH signaling, estrogen-mediated signaling, and apoptosis. In pancreatic cells, NSC305787 reduced cell viability, clonal growth, and migration. Our exploratory molecular studies identified that NSC305787 modulates the expression and activation of key regulators of the cell cycle, proliferation, DNA damage, and apoptosis, favoring a tumor-suppressive molecular network. In conclusion, EZR expression is an independent prognosis marker in pancreatic cancer. Our study identifies a novel molecular axis underlying the antineoplastic activity of NSC305787 and provides insights into the development of therapeutic strategies for pancreatic cancer.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Adamantano/análogos & derivados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Citoesqueleto , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases , Quinolinas , Neoplasias Pancreáticas
2.
Bioorg Med Chem Lett ; 41: 127988, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775838

RESUMO

Skin cancer is the most common type of cancer in Brazil, representing 30% of all cases. Among these, melanoma represents only 3% of malignant neoplasms; however, it is the most serious and has a high capacity for metastasis. For this reason, it is extremely important to identify more efficient compounds and treatments that stop or decrease the proliferation of melanoma, even in its more advanced stages. This work reports the synthesis and biological evaluation of two homologous series of pyrazoline fatty chain derivatives as potent antitumoral agents in the melanoma B16F10 cell line. Cells were treated with pyrazoline fatty chain compounds (3, 30, 300, and 3000 µM) for 0, 24, 48, and 72 h. Decreased cell viability was observed when using most compounds at different concentrations and times. The structure-activity relationship (SAR) between antitumoral activity and the number of carbons and lipophilicity, as well as the oxygen-sulfur bioisosteric exchange, was evaluated. Among the tested derivatives, the lipophilic compounds 5-hydroxy-5-(trifluoromethyl)-3-undecyl-4,5-dihydro-1H-pyrazole-1-carboxamide (2d) and 5-hydroxy-5-(trifluoromethyl)-3-undecyl-4,5-dihydro-1H-pyrazole-1-thiocarboxamide (3d) showed the best results in the B16F10 cell line, as they produced the best cell viability decrease effects. The presence of fatty unbranched undecyl chain in the molecular structure appears to be important for its antimelanoma properties.


Assuntos
Antineoplásicos/farmacologia , Pirazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
3.
Pharm Res ; 37(8): 159, 2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32743712

RESUMO

Monoclonal antibody (Mabs) containing medicinal products are widely used in clinical practice. Prior to parenteral administration, licensed Mab containing medicinal products are transferred to the ready-to-administer (RTA) forms. Reconstitution and/or preparation should follow the guidelines for Good Reconstitution/Good Preparation Practice. Preparation in the pharmacy must take place within the framework of a suitable quality management system. The responsible pharmacist must apply a risk assessment on the process to ensure the appropriate quality of the RTA preparation, especially because the extent of quality testing is limited by batch size (often one single unit) and time restraints. In these cases, appropriate quality is to be assured by means of qualification activities, environmental monitoring, process validation with growth medium and in-process controls. Correct labelling of the Mab containing RTA preparations includes a suitable storage advice and a defined shelf life. Physicochemical stability of a given Mab preparation can be assessed based on a specific stability study (supplied by the manufacturer in the SmPC or scientific journals, study published by an expert in a peer-reviewed scientific journal). Physicochemical stability studies require the use of various orthogonal physicochemical methods to detect accurately the degradation changes that may result from the deamidation, oxidation, disulfide formation, aggregation or fragmentation during storage. Complementary, biological activity can be measured. Compatibility studies of Mabs and devices used for preparation and administration are still scarce. Microbiological stability of Mab preparations is related to the complexity of the preparation process, the growth supporting nature of the preparation and the integrity of the container or container/closure combination. In use viability tests revealed that the potential of Mab preparations to support microbial growth was similar to that of the pure vehicle solutions used as control solutions. The enumerated microbial counts varied according to the species utilized and the type of Mab preparation. If sterility testing of the individual preparation is impossible, maximum permitted shelf life can be assessed empirically with regard to the maximum shelf lives defined in the USP <797> monograph. Finally, microbiological and physicochemical stability are to be considered concurrently when determining the shelf life of an individual Mab preparation. In each case, shelf life should be limited according to the shorter period of proven stability, either derived from the microbiological or physicochemical stability data.


Assuntos
Anticorpos Monoclonais/farmacologia , Produtos Biológicos/farmacologia , Indústria Farmacêutica/normas , Preparações Farmacêuticas/normas , Composição de Medicamentos , Estabilidade de Medicamentos , Monitoramento Ambiental , Humanos , Proteólise , Controle de Qualidade , Medição de Risco , Gestão de Riscos
4.
Chem Biodivers ; 16(1): e1800408, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30452120

RESUMO

To enhance the structural diversity of isoflavonoids and provide more derivatives for the biological screening, a semisynthetic mixture was generated by diversification of the crude extract of Radix puerariae (Pueraria montana var. lobata) through the chemical reaction with hydrazine hydrate. Eleven 3,4-diarylpyrazoles (1-11) and two 5-phenyl-6-benzyldihydropyridazinones (12 and 13) were isolated from the semisynthetic mixture, and their structures were identified by spectroscopic methods in combination with X-ray crystallographic analysis. Among them, nine compounds (5-13) were new derivatives. All the compounds were evaluated on the inhibitory activities against the prostate cancer cell lines LNCaP and PC3. Compounds 12 and 13 were found to exhibit much more potent inhibitory activities against the androgen dependent LNCaP cells than the androgen independent PC3 cells. Rapid synthesis of new 3,4-diarylpyrazoles and two 5-phenyl-6-benzyldihydropyridazinones with significant biological activity highlights the great potential of one-pot combinatorial modification for the diversification of natural products.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Pueraria/química , Androgênios/fisiologia , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Neoplasias da Próstata/patologia , Espectroscopia de Prótons por Ressonância Magnética , Pirazóis/química , Pirazóis/isolamento & purificação , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/isolamento & purificação , Pirimidinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray
5.
Molecules ; 23(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890618

RESUMO

Four new sesquiterpenoids, known as diarthronchas A⁻D (1⁻4), and one known daphnauranol B (5) were isolated from the methanol extract of the roots of Diarthron tianschanica. The compounds structures were determined on the basis of spectroscopic data. All of the isolated compounds were profiled for their antineoplastic activity.


Assuntos
Antineoplásicos/farmacologia , Raízes de Plantas/química , Sesquiterpenos/farmacologia , Thymelaeaceae/química , Antineoplásicos/química , Linhagem Celular Tumoral , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Humanos , Concentração Inibidora 50 , Sesquiterpenos/química , Análise Espectral/métodos , Relação Estrutura-Atividade
6.
Int J Cancer ; 141(1): 72-82, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436066

RESUMO

Meta-analytic data on the effect of coffee in prostate cancer risk are controversial. Caffeine as a bioactive compound of coffee has not yet been studied in deep in vitro. Our study aimed at evaluating in a population cohort the effect of Italian-style coffee consumption on prostate cancer risk and at investigating in vitro the potential antiproliferative and antimetastatic activity of caffeine on prostate cancer cell lines. 6,989 men of the Moli-sani cohort aged ≥50 years were followed for a mean of 4.24 ± 1.35 years and 100 new prostate cancer cases were identified. The European Prospective Investigation into Cancer and Nutrition-Food Frequency Questionnaire was used for the dietary assessment and the evaluation of Italian-style coffee consumption. Two human prostate cancer cell lines, PC-3 and DU145, were tested with increasing concentrations of caffeine, and their proliferative/metastatic features were evaluated. The newly diagnosed prostate cancer participants presented lower coffee consumption (60.1 ± 51.3 g/day) compared to the disease-free population (74.0 ± 51.7 g/day) (p < 0.05). Multiadjusted analysis showed that the subjects at highest consumption (>3 cups/day) had 53% lower prostate cancer risk as compared to participants at the lowest consumption (0-2 cups/day) (p = 0.02). Both human prostate cancer cell lines treated with caffeine showed a significant reduction in their proliferative and metastatic behaviors (p < 0.05). In conclusion, reduction by Italian-style coffee consumption of prostate cancer risk (>3 cups/day) was observed in epidemiological level. Caffeine appeared to exert both antiproliferative and antimetastatic activity on two prostate cancer cell lines, thus providing a cellular confirmation for the cohort study results.


Assuntos
Cafeína/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Café , Neoplasias da Próstata/epidemiologia , Idoso , Linhagem Celular Tumoral , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Fatores de Risco , Chá
7.
Crit Rev Biotechnol ; 37(1): 82-99, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26694875

RESUMO

l-asparaginase (l-asparagine amino hydrolase, E.C.3.5.1.1) is an enzyme clinically accepted as an antitumor agent to treat acute lymphoblastic leukemia and lymphosarcoma. It catalyzes l-asparagine (Asn) hydrolysis to l-aspartate and ammonia, and Asn effective depletion results in cytotoxicity to leukemic cells. Microbial l-asparaginase (ASNase) production has attracted considerable attention owing to its cost effectiveness and eco-friendliness. The focus of this review is to provide a thorough review on microbial ASNase production, with special emphasis to microbial producers, conditions of enzyme production, protein engineering, downstream processes, biochemical characteristics, enzyme stability, bioavailability, toxicity and allergy potential. Some issues are also highlighted that will have to be addressed to achieve better therapeutic results and less side effects of ASNase use in cancer treatment: (a) search for new sources of this enzyme to increase its availability as a drug; (b) production of new ASNases with improved pharmacodynamics, pharmacokinetics and toxicological profiles, and (c) improvement of ASNase production by recombinant microorganisms. In this regard, rational protein engineering, directed mutagenesis, metabolic flux analysis and optimization of purification protocols are expected to play a paramount role in the near future.


Assuntos
Antineoplásicos , Asparaginase , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase/química , Asparaginase/metabolismo , Asparaginase/uso terapêutico , Bactérias/metabolismo , Composição de Medicamentos , Fungos/metabolismo , Engenharia de Proteínas
9.
J Inorg Biochem ; 262: 112758, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39393298

RESUMO

The interest in the antineoplastic and binding properties shown by the bis-maltol polyamine family, particularly Malten and Maltonis, prompted us to study the Pd2+ complexes of these latter from both a biological and metallo-receptor point of view. The Malten-Pd2+ complex can lodge hard species such as Sr2+ in its coordination-driven preorganized pocket, as confirmed by X-ray diffraction. UV-Vis and NMR data showed that Malten-Pd2+ forms even at acidic pH and exists in aqueous solution in a wide range of pH. The mononuclear complex is stable enough not to release Pd2+ in solution for a long period of time (at least one week), thus Malten-Pd2+, similarly to Maltonis-Pd2+, is suitable to be tested in biological analyses. Studies on the U937 cell line revealed that the effect on cell survival reduction induced by Malten is partially lost in Malten-Pd2+, while no differences where monitored between the effects of Maltonis-Pd2+ and Maltonis, suggesting that the availability of free maltol moieties, that is retained in Maltonis-Pd2+, but not in Malten-Pd2+, is crucial to guarantee the biological activity of these compounds.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37724671

RESUMO

Tumor is a serious threat to human health, with extremely high morbidity and mortality rates. However, tumor treatment is challenging, and the development of antitumor drugs has always been a significant research focus. Plant polysaccharides are known to possess various biological activities. They have many pharmacological properties such as immunomodulation, antitumor, antiviral, antioxidative, antithrombotic, and antiradiation effects, reduction of blood pressure and blood sugar levels, and protection from liver injury. Among these effects, the antitumor effect of plant polysaccharides has been widely studied. Plant polysaccharides can inhibit tumor proliferation and growth by inhibiting tumor cell invasion and metastasis, inducing cell apoptosis, affecting the cell cycle, and regulating the tumor microenvironment. They also have the characteristics of safety, high efficiency, and low toxicity, which can alleviate, to a certain extent, the adverse reactions caused by traditional tumor treatment methods such as surgery, radiotherapy, and chemotherapy. Therefore, this paper systematically summarizes the direct antitumor effects of plant polysaccharides, their regulatory effects on the tumor microenvironment, and intervening many common high-incidence tumors in other ways. It also provides data support for the administration of plant polysaccharides in modern tumor drug therapy, enabling the identification of new targets and development of new drugs for tumor therapy.

11.
Pharmaceutics ; 15(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111690

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer and constitutes 10-20% of all breast cancer cases. Even though platinum-based drugs such as cisplatin and carboplatin are effective in TNBC patients, their toxicity and development of cancer drug resistance often hamper their clinical use. Hence, novel drug entities with improved tolerability and selectivity profiles, as well as the ability to surpass resistance, are needed. The current study focuses on Pd(II) and Pt(II) trinuclear chelates with spermidine (Pd3Spd2 and Pt3Spd2) for evaluating their antineoplastic activity having been assessed towards (i) cisplatin-resistant TNBC cells (MDA-MB-231/R), (ii) cisplatin-sensitive TNBC cells (MDA-MB-231) and (iii) non-cancerous human breast cells (MCF-12A, to assess the cancer selectivity/selectivity index). Additionally, the complexes' ability to overcome acquired resistance (resistance index) was determined. This study revealed that Pd3Spd2 activity greatly exceeds that displayed by its Pt analog. In addition, Pd3Spd2 evidenced a similar antiproliferative activity in both sensitive and resistant TNBC cells (IC50 values 4.65-8.99 µM and 9.24-13.34 µM, respectively), with a resistance index lower than 2.3. Moreover, this Pd compound showed a promising selectivity index ratio: >6.28 for MDA-MB-231 cells and >4.59 for MDA-MB-231/R cells. Altogether, the data presently gathered reveal Pd3Spd2 as a new, promising metal-based anticancer agent, which should be further explored for the treatment of TNBC and its cisplatin-resistant forms.

12.
Front Pharmacol ; 14: 1326346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152688

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignant tumors with high incidence and mortality rates in the world. Isothiocyanates (ITCs), bioactive substances present primarily in the plant order Brassicales, have been proved to be promising candidates for novel anti-HCC drugs with chemopreventive and anticancer activities. Iberverin, a predominant ITC isolated from the seeds of oxheart cabbage, has been discovered with anticancer property in lung cancer cells. However, the roles of iberverin in HCC remain elusive. In the present study, the effect and potential mechanisms of iberverin against human HCC were dissected. We demonstrated that low concentrations of iberverin inhibited cell proliferation, suppressed migration and induced mitochondrial-related apoptosis in vitro, and hampered tumorigenicity in vivo, with no obvious toxicity. Furthermore, we found that iberverin treatment induced DNA damage and G2/M phase arrest. Iberverin treatment also caused increased intracellular reactive oxygen species formation and glutathione depletion. Taken together, these results suggest that iberverin promotes mitochondrial-mediated apoptosis and induces DNA damage and G2/M cell cycle arrest in HCC by enhancing oxidative stress. Our findings provide better understanding of the anti-HCC mechanisms of ITCs and the potential for the natural product iberverin as a promising new anti-HCC biotherapeutic.

13.
Phytochemistry ; 200: 113186, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35500784

RESUMO

Eleven undescribed limonoids, cipacinerasins A-K, involving of four diverse carbon skeletal types, along with fifteen known analogues, were isolated from the branches and leaves of Cipadessa baccifera. Within them, cipacinerasins A and B feature a rearranged tetrahydropyranyl ring B formed between C-8 and C-30, are unusual miscellaneous-type limonoids. Cipacinerasins E and F are rare trijugin-type limonoids, of which the D-ring δ-lactone is cleaved. Their structures were elucidated on the basis of extensive spectroscopic data (HRESIMS, NMR, UV and IR), electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. All compounds were evaluated in vitro cytotoxicity against five human tumor cell lines (K562, HeLa, PC3, LN-Cap and Hell), and cipacinerasin E showed moderate antitumor activity with IC50 values ranging from 8.0 to 24.8 µM.


Assuntos
Limoninas , Meliaceae , Linhagem Celular Tumoral , Limoninas/química , Limoninas/farmacologia , Meliaceae/química , Estrutura Molecular , Folhas de Planta/química
14.
Curr Med Chem ; 29(21): 3684-3731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34781859

RESUMO

The first highly diastereoselective synthesis of ß-anomers of 4'-thionucleosides has been carried out by means of electrophilic glycosidation utilizing 3,5-O-(di-tertbutylsilylene) (DTBS)-4-thiofuranoid glycal as a glycosyl donor. The resulting glycosides were transformed into ribo-, 2'-deoxy-, and arabinofuranosyl nucleosides through a chemical transformation of the 2'-substituent. The additive Pummerer reaction of the glycal Soxide gave 1,2-di-O-acetyl-3,5-O-DTBS-4-thioribofuranose. The utility of the DTBSprotected 4-thioribofuranose has been demonstrated by the preparation of 4'-thio analogues of pyrimidine- and purine-4'-thioribonucleosides based on the Vorbrüggen glycosidation. Synthesis of 4'-thio-counterpart of C-nucleoside antibiotic tiazofurin has also been carried out. α-Face selective hydroboration of 1-C-aryl- or 1-C-heteroaryl-glycals obtained by cross-coupling of 1-tributylstannylglycal has furnished the respective ß- anomer of 4'-thio-C-ribonucleosides, including 4'-thio analogue of nucleoside antibiotic pseudouridine and 9-deazaadenosine. On the basis of lithiation chemistry, 1-C- and 2-Ccarbon- carbon-substituted 3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3- diyl) (TIPDS)- 4- thiofuranoid glycal were synthesized. These glycals enabled us to prepare 1'-C- and 2'-ß- C-carbon-substituted 2'-deoxy-4'-thionucleosides, including thio-counterpart of antitumor nucleoside antibiotic angustmycin C. Furthermore, 1'-C-methyl-4'-thiothymidine emerged as a potent inhibitor of angiogenesis. In addition, 1'-C-methyl-4'-thiothymidine exhibited more potent inhibitory activity against thymidine kinase-deficient mutant of herpes virus than that of ganciclovir. Among the 4'-substituted 4'-thiothymidines, the 4'- C-cyano- and 4'-C-ethynyl derivatives inhibited replication of HIV variant resistant to 3TC (HIVM184V) as potently as HIV-1IIIB. In terms of the value of selectivity index (SI), 4'-C-cyano-4'-thiothymidine showed a 3-fold selective index (SI) than that of the corresponding thymidine derivative. Furthermore, 4'-C-ethynyl-2'-deoxy-4'-thioguanosine has a 20-fold better value (>18,200) than that of 2'-deoxyguanosine counterpart (933). Furthermore, 4'-azido-4'-thiothymidine emerged as a selective and potent anti-EBV agent. In terms of antineoplastic activity, 4'-azido- and 4'-C-fluoromethyl-2'-deoxy-4'-thiocytidine inhibited proliferation of human B-cell (CCRF-SB) and T-cell leukemia (Molt-4) cell lines, although the parent compound 2'-deoxy-4'-thiocytidine did not exhibit any cytotoxicity up to 100 µM. These facts concerning the biological activities suggested that replacement of the furanose oxygen with a sulfur atom is a promising approach for the development of less toxic antiviral and antineoplastic nucleoside antimetabolites. 4'- Thionucleoside also acts as a monomer for oligonucleotides (ONs) therapeutics, exhibiting superior biological properties. Therefore, this review provides a wide range of potential monomers for antisense ON and siRNA.


Assuntos
Infecções por HIV , Nucleosídeos , Antibacterianos , Carbono , Humanos , Siloxanas , Tionucleosídeos/química , Tionucleosídeos/farmacologia , Tiofenos
15.
Chem Biol Interact ; 351: 109734, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34742685

RESUMO

Malignant melanoma has a low incidence, but is the most lethal type of skin cancer. Studies have shown that dibenzoylmethanes (DBMs) have interesting biological activities, including antineoplastic properties. These findings led us to investigate whether news DBM derivatives exert antitumor effects against skin cancers. In a previous study, we found that 1,3-diphenyl-2-benzyl-1,3-propanedione (DPBP) has high in vitro antineoplastic activity against murine B16F10 melanoma cells, with an IC50 of 6.25 µg/mL. In the current study, we used transdermal and topical formulations of DPBP to evaluate its activity and molecular mechanism of action in a murine model of melanoma. The compound induces tumor cell death with high selectivity (selectivity index of 41.94) by triggering apoptosis through intrinsic and extrinsic pathways. DPBP treatment reduced tumor volume as well as serum VEGF-A and uric acid levels. Hepatomegaly and nephrotoxicity were not observed at the tested doses. Histopathological analysis of sentinel lymph nodes revealed no evidence of metastases. According to the observed data, the DPBP compound was effective for the topical treatment of melanoma cancer, suggesting that it acts as a chemotherapeutic or chemopreventive agent.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Chalconas/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Chalconas/síntese química , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
16.
Biochem Biophys Rep ; 30: 101244, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35308071

RESUMO

Among the major constituents of Leea rubra (Family Vitaceae) leaves, phenolic and flavonoind compounds are most important for therapeutic purposes and the plant parts have been used in traditional medicine to treat several diseases for long. Thus, in order to scientifically confirm the traditional uses of the L. rubra leaves, the present study was designed to investigate the efficacy of the isolated flavones against AAPH induced oxidative damage to pUC19 DNA by gel electrophoresis and antineoplastic activity was evaluated on Ehrlich ascites carcinoma (EAC) bearing Swiss albino mice by evaluating percentage inhibition of cell growth, morphological changes of EAC cells and hematological parameters of the mice. The isolation was carried out by column chromatography and structure was revealed by 1H-NMR and 13C NMR. The result shows that, the isolated compound was identified as myricetin 4'-methoxy-3-O-α-l-rhamnopyranoside based on previously reported data. The isolated flavone effectively inhibited AAPH-induced oxidative damage to DNA; because it could inhibit the formation of circular and linear forms of the DNA. In anti-proliferative assay, 76% growth inhibition of EAC cells was observed as compare to the control mice (p<0.05) at a dose 100 mg/kg body weight. Thus the isolated flavone showed great importance as a possible therapeutic agent in preventing oxidative damage to DNA and the chronic diseases caused by such DNA damage, and can also become important in cancer chemotherapy.

17.
Endocrine ; 75(1): 169-177, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34264510

RESUMO

PURPOSE: Koningic acid (KA), a sesquiterpene lactone, has been identified as an antimicrobial agent. Recent studies have revealed KA's antitumor activities in colorectal cancer, leukemia, and lung cancer. However, its antitumor effect in thyroid cancer remains largely unknown. METHODS: The effects of KA on proliferation, colony formation, apoptosis in thyroid cancer cells were assessed by MTT assay and flow cytometry. After KA treatment, the glycolysis ability of thyroid cancer cells was detected by ECAR, and the glycolytic products and relative ATP levels were measured by ELISA. The underlying mechanisms of antineoplastic activity of KA in thyroid cancer were detected by Western blot. Finally, the antineoplastic activity in vivo was observed in Xenograft mouse models. RESULTS: KA inhibited the proliferation, colony formation, and increased cell apoptosis in thyroid cancer cell lines in a dose and time-dependent manner. We verified that the glycolysis ability, ATP production, and lactic acid level in thyroid cancer cells had experienced an extensive decrease after KA treatment. In addition, lactic acid, the metabolite of glycolysis, could weaken the effect of KA on its colony formation ability in C643 thyroid cancer cell line. Our data also showed that KA kills thyroid cancer cells by inhibiting the MAPK/ERK pathway and decreasing Bcl-2 level. By contrast with the control group, the growth of xenograft tumor was dramatically inhibited by KA without obvious drug side effects. CONCLUSION: Our data demonstrate that KA kills thyroid cancer cell lines by inhibiting their glycolysis ability, the MAPK/ERK pathway and the Bcl-2 level and suggest that KA has potential clinical value in thyroid cancer therapy.


Assuntos
Sesquiterpenos , Neoplasias da Glândula Tireoide , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Humanos , Camundongos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
18.
Front Chem ; 10: 830511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252118

RESUMO

The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6-31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds' main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate's anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.

19.
Toxicol In Vitro ; 83: 105384, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568132

RESUMO

Myeloproliferative neoplasms (MPN) belong to a group of clonal diseases of hematopoietic stem cells characterized by aberrant proliferation of mature myeloid lineages. The constitutive activation of the JAK2/STAT signaling pathway is now well established to play a central role in MPN pathogenesis; however, accumulating evidence now indicates that the IGF1R-mediated signaling pathway contributes to the maintenance of the malignant phenotype. Studies using inhibitors of IGF1-mediated signaling have reported cytotoxic effects in cellular and murine models of MPN, but no consensus has been reached regarding the potency and efficacy of inhibitors of the IGF1R-related pathway in this context. In the present study, we compared the potency and efficacy of three inhibitors of IGF1R-related pathways in a JAK2V617F-driven cellular model. These inhibitors (NT157, OSI-906, and NVP-AEW54) present antineoplastic activity with similar efficacy in Ba/F3 JAK2V617F cells, with NT157 showing the greatest potency. Both the induction of apoptosis and reduction in cell proliferation were associated with the observed reduction in cell viability. Downregulation of JAK2/STAT signaling was an advantageous off-target effect of all three inhibitors. These preclinical studies reinforce the potential of the IGF1R-related pathway as a therapeutic target in MPN.


Assuntos
Antineoplásicos , Transtornos Mieloproliferativos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Janus Quinase 2/metabolismo , Camundongos , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
20.
Oncol Rep ; 46(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643248

RESUMO

Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit­8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription­quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR­induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co­immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα­interacting protein­interacting protein at the C­terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Berberina/farmacologia , Transportador de Glucose Tipo 1/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Células Hep G2 , Humanos , Células MCF-7 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA