Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(40): e2206990119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161913

RESUMO

Rapid detection of pathogenic bacteria within a few minutes is the key to control infectious disease. However, rapid detection of pathogenic bacteria in clinical samples is quite a challenging task due to the complex matrix, as well as the low abundance of bacteria in real samples. Herein, we employ a label-free single-particle imaging approach to address this challenge. By tracking the scattering intensity variation of single particles in free solution, the morphological heterogeneity can be well identified with particle size smaller than the diffraction limit, facilitating the morphological identification of single bacteria from a complex matrix in a label-free manner. Furthermore, the manipulation of convection in free solution enables the rapid screening of low-abundance bacteria in a small field of view, which significantly improves the sensitivity of single-particle detection. As a proof of concept demonstration, we are able to differentiate the group B streptococci (GBS)-positive samples within 10 min from vaginal swabs without using any biological reagents. This is the most rapid and low-cost method to the best of our knowledge. We believe that such a single-particle imaging approach will find wider applications in clinical diagnosis and disease control due to its high sensitivity, rapidity, simplicity, and low cost.


Assuntos
Bactérias , Doenças Transmissíveis , Análise de Célula Única , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças Transmissíveis/diagnóstico por imagem , Feminino , Humanos , Tamanho da Partícula , Análise de Célula Única/métodos , Esfregaço Vaginal
2.
Anal Biochem ; 695: 115639, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127327

RESUMO

Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.

3.
Biotechnol Bioeng ; 121(9): 2549-2584, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38822742

RESUMO

Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.


Assuntos
Bactérias , Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Farmacorresistência Bacteriana , Humanos , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Antibacterianos/farmacologia , Sistemas Automatizados de Assistência Junto ao Leito
4.
J Fluoresc ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180572

RESUMO

The monitoring of pathogenic microorganisms in water is important for public health and disease outbreaks prediction. Recently, optical detection techniques have drawn much attention due to the advantages of rapid response, security and high sensitivity. In this paper, a fluorescence spectrometer based on 375 nm exciting laser and the microchannel liquid sample flow technology is proposed. The 4 × 4 narrowband filter array was coupled to a Silicon Photomultiplier (SiPM) array with single-photon sensitivity. B500 fluorescent microspheres and Escherichia coli were used for performance evaluation of the spectrometer. As a result, it is feasible to use random particle counting method to detect the bacteria concentration level in water even low to several CFU/mL. In addition, based on Python tools and neural network algorithm models, the fluorescence spectra of different kinds of substances (biotic and abiotic) can be classified with an accuracy of more than 97%. The method was successfully applied to tap water samples. The results suggest that the proposed method is applicable for on-site bacteria detection.

5.
Mikrochim Acta ; 191(5): 237, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570419

RESUMO

An ultra-sensitive fluorescent biosensor based on CDs/QDs@ZIF-8 and microfluidic fluidized bed was developed for rapid and ultra-sensitive detection of multiple target bacteria. The zeolitic imidazolate frameworks (ZIF-8) act as the carrier to encapsulate three kinds of fluorescence signal molecules from the CDs/QDs@ZIF-8 signal amplification system. Besides, three kinds of target pathogenic bacteria were automatically, continuously, and circularly captured by the magnetic nanoparticles (MNPs) in the microfluidic fluidized bed. The neutral Na2EDTA solution was the first time reported to not only dissolve the ZIF-8 frameworks from the MNPs-bacteria-CDs/QDs@ZIF-8 sandwich complexes, but also release the CDs/QDs from sandwich complexes with no loss of fluorescence signal. Due to the advantages of signal amplification and automated sample pretreatment, the proposed fluorescent biosensor can simultaneously detect Escherichia coli O157:H7, Salmonella paratyphi A, and Salmonella paratyphi B as low as 101 CFU/mL within 1.5 h, respectively. The mean recovery in spiked milk samples can reach 99.18%, verifying the applicability of this biosensor in detecting multiple bacteria in real samples.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Pontos Quânticos , Zeolitas , Microfluídica , Corantes
6.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732977

RESUMO

Label-free measurement and analysis of single bacterial cells are essential for food safety monitoring and microbial disease diagnosis. We report a microwave flow cytometric sensor with a microstrip sensing device with reduced channel height for bacterial cell measurement. Escherichia coli B and Escherichia coli K-12 were measured with the sensor at frequencies between 500 MHz and 8 GHz. The results show microwave properties of E. coli cells are frequency-dependent. A LightGBM model was developed to classify cell types at a high accuracy of 0.96 at 1 GHz. Thus, the sensor provides a promising label-free method to rapidly detect and differentiate bacterial cells. Nevertheless, the method needs to be further developed by comprehensively measuring different types of cells and demonstrating accurate cell classification with improved machine-learning techniques.


Assuntos
Escherichia coli , Citometria de Fluxo , Micro-Ondas , Citometria de Fluxo/métodos , Escherichia coli/isolamento & purificação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação
7.
Compr Rev Food Sci Food Saf ; 22(3): 1839-1863, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871164

RESUMO

Escherichia coli are a group of bacteria that are a natural part of the intestinal flora of warm-blooded animals, including humans. Most E. coli are nonpathogenic and essential for the normal function of a healthy intestine. However, certain types, such as Shiga toxin-producing E. coli (STEC), which is a foodborne pathogen, can cause a life-threatening illness. The development of point-of-care devices for the rapid detection of E. coli is of significant interest with regard to ensuring food safety. The most suitable way to distinguish between generic E. coli and STEC is by using nucleic acid-based detection, focusing on the virulence factors. Electrochemical sensors based on nucleic acid recognition have attracted much attention in recent years for use in pathogenic bacteria detection. This review has summarized nucleic acid-based sensors for the detection of generic E. coli and STEC since 2015. First, the sequences of the genes used as recognition probes are discussed and compared to the most recent research regarding the specific detection of general E. coli and STEC. Subsequently, the collected literature regarding nucleic acid-based sensors is described and discussed. The traditional sensors were divided into four categories such as gold, indium tin oxide, carbon-based electrodes, and those using magnetic particles. Finally, we summarized the future trends in nucleic acid-based sensor development for E. coli and STEC including some examples of fully integrated devices.


Assuntos
Escherichia coli , Toxina Shiga , Animais , Humanos , Toxina Shiga/genética , Inocuidade dos Alimentos , Microbiologia de Alimentos
8.
J Dairy Sci ; 105(12): 9450-9462, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36207178

RESUMO

Foodborne pathogens detection is important to ensure food safety and human health. In this study, we designed a comet structure to rapidly and sensitively detect foodborne Listeria monocytogenes. This method combined isothermal sequence exchange amplification (SEA) and surface-enhanced Raman spectroscopy. Listeria monocytogenes DNA could be rapidly amplified at a constant temperature via SEA with a pair of modified primers, which rendered the precise thermal control instrumentation unnecessary. Efficient SEA amplification generated a large number of DNA duplexes that could be easily captured by streptavidin-modified magnetic bead and AuMB@Ag-isothiocyanate fluorescein antibody (anti-FITC). AuMB@Ag-anti-FITC was used as a signal probe, which generated a significant excitation signal at 1,616 cm-1 for quantitative detection and analysis. The results displayed sensitive detection of L. monocytogenes in cheese from 2.0 × 101 cfu/mL to 2.0 × 106 cfu/mL within 1.0 h with a detection limit of 7.8 cfu/mL. Furthermore, this comet structure displayed the desirable specificity as its specific primers and amplified DNA ends were attached to streptavidin-modified magnetic beads and AuMB@Ag-anti-FITC, respectively. We expected that the method devised would provide a promising new approach to screening for L. monocytogenes and guarantee the microbiological safety of dairy products.


Assuntos
Queijo , Contaminação de Alimentos , Listeria monocytogenes , Queijo/microbiologia , Primers do DNA/genética , Microbiologia de Alimentos , Listeria monocytogenes/isolamento & purificação , Análise Espectral Raman , Estreptavidina
9.
Mikrochim Acta ; 189(4): 160, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347452

RESUMO

Sensitive and rapid detection of pathogenic bacteria plays an important role in avoiding food poisoning. However, the practical application value of conventional assays for detection of foodborne bacteria, are limited by major drawbacks; these include the laboriousness of pure culture preparation, complexity of DNA extraction for polymerase chain reaction, and low sensitivity of enzyme-linked immunosorbent assay. Herein, we designed a non-complex strategy for the sensitive, quantitative, and rapid detection of Salmonella typhimurium with high specificity, using an anti-Salmonella typhimurium IgG-AuNC-based immunofluorescent-aggregation assay. Salmonella typhimurium was agglutinated with fluorescent anti-Salmonella typhimurium IgG-AuNC on a glass slide, and observed using a fluorescence microscope with photoexcitation and photoemission at 560 nm and 620 nm, respectively. Under optimized reaction conditions, the AuNC-based immunofluorescent-aggregation assay had a determination range between 7.0 × 103 and 3.0 × 108 CFU/mL, a limit of detection of 1.0 × 103 CFU/mL and an assay response time of 3 min. The technique delivered good results in assessing real samples.


Assuntos
Anticorpos Antibacterianos , Salmonella typhimurium , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Reação em Cadeia da Polimerase
10.
Anaerobe ; 76: 102611, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35820595

RESUMO

OBJECTIVE: Although anaerobic bacteria are important agents of a wide variety of serious infections, they are overlooked often in the etiology of infection due to difficulties in isolation and detection. The aim of this study was to develop a new multiplex PCR panel that could detect Bacteroides, Fusobacterium, Prevotella, Veillonella, Clostridium, Peptostreptococcus, and Actinomyces bacteria, which are the most frequently isolated from anaerobic infections, at the genus level. METHOD: Aerobic and anaerobic cultures were performed on 46 clinical specimens, with suspicion of anaerobic infection and were sent to the laboratory. DNA isolation was performed with the same samples and anaerobic bacteria were detected by the multiplex PCR test developed in the study. RESULT: The analytical sensitivity of the multiplex PCR assay was found to be 1-103 CFU/ml, depending on the bacterial species. In this study, anaerobic growth was observed in eight (17.4%) of 46 clinical samples. The multiplex PCR test detected 35 anaerobic bacteria from 20 (43.5%) of 46 clinical samples. The most common anaerobes isolated from clinical specimens by the multiplex PCR assay were Prevotella spp. (37.1%) and Fusobacterium spp. (22.9%) while Clostridium spp. (14.3%), Peptostreptococcus spp. (11.4%), Bacteroides spp. (8.6%), and Veillonella spp. (5.7%) followed these genera. CONCLUSION: As a result, it was concluded that the multiplex PCR panel developed in this study eliminates problems in the detection of anaerobes based on culture, provides more accurate detection of anaerobic bacteria from clinical specimens, takes a shorter time, and allows more accurate infection treatment.


Assuntos
Bactérias Anaeróbias , Infecções Bacterianas , Bactérias/genética , Infecções Bacterianas/microbiologia , Clostridium , Fusobacterium/genética , Humanos , Reação em Cadeia da Polimerase Multiplex
11.
Compr Rev Food Sci Food Saf ; 21(3): 3010-3029, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483732

RESUMO

There has long been a need for more advanced forms of pathogen detection in the food industry. Though in its infancy, biosensing based on clustered regularly interspaced short palindromic repeats (CRISPR) has the potential to solve many problems that cannot be addressed using conventional methods. In this review, we briefly introduce and classify the various CRISPR/Cas protein effectors that have thus far been used in biosensors. We then assess the current state of CRISPR technology in food-safety contexts; describe how each Cas effector is utilized in foodborne-pathogen detection; and discuss the limitations of the current technology, as well as how it might usefully be applied in other areas of the food industry. We conclude that, if the limitations of existing CRISPR/Cas-based detection methods are overcome, they can be deployed on a wide scale and produce a range of positive food-safety outcomes.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Indústria Alimentícia
12.
Small ; 17(21): e2006230, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870615

RESUMO

Array-based biosensors have shown as effective and powerful tools to distinguish intricate mixtures with infinitesimal differences among analytes such as nucleic acids, proteins, microorganisms, and other biomolecules. In array-based bacterial sensing, the recognition of bacteria is the initial step that can crucially influence the analytical performance of a biosensor array. Bacteria recognition as well as the signal readout and mathematical analysis are indispensable to ensure the discrimination ability of array-based biosensors. Strategies for bacteria recognition mainly include the specific interaction between biomolecules and the corresponding receptors on bacteria, the noncovalent interaction between materials and bacteria, and the specific targeting of bacterial metabolites. In this review, recent advances in array-based bacteria sensors are discussed from the perspective of bacteria recognition relying on the characteristics of different bacteria. Principles of bacteria recognition and signal readout for bacteria detection are highlighted as well as the discussion on future trends in array-based biosensors.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Bactérias , Proteínas
13.
J Dairy Sci ; 104(6): 6588-6597, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33715855

RESUMO

In this study, we established a rapid and sensitive method for the detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk using biotin-exposure-based immunomagnetic separation (IMS) combined with sodium dodecyl sulfate (SDS), propidium monoazide (PMA), and multiplex real-time PCR (mRT-PCR). We used IMS to lessen the assay time for isolation of target bacteria. We then optimized the coupling conditions and immunomagnetic capture process. The immunoreaction and incubation times for 5 µg of mAb coupled with 500 µg of streptavidin-functionalized magnetic beads using a streptavidin-biotin system were 90 and 30 min, respectively. Treatment with SDS-PMA before mRT-PCR amplification eliminated false-positive outcomes from dead bacteria and identified viable target bacteria with good sensitivity and specificity. The limit of detection of IMS combined with the SDS-PMA-mRT-PCR assay for the detection of viable Salmonella Typhimurium, Staph. aureus, and L. monocytogenes in spiked milk matrix samples was 10 cfu/mL and remained significant even in the appearance of 106 cfu/mL of nontarget bacteria. The entire detection process was able to identify viable bacteria within 9 h. The combination of biotin-exposure-mediated IMS and SDS-PMA-mRT-PCR has potential value for the rapid and sensitive detection of foodborne pathogens.


Assuntos
Listeria monocytogenes , Animais , Azidas , Biotina , Separação Imunomagnética/veterinária , Leite , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Salmonella typhimurium/genética , Dodecilsulfato de Sódio , Staphylococcus aureus/genética
14.
Sensors (Basel) ; 21(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946193

RESUMO

This study reports a novel, fast, easy, and sensitive detection method for bacteria which is urgently needed to diagnose infections in their early stages. Our work presents a complex of poly(amidoamine) dendrimer modified by phenylboronic acid and labeled by a fluorescent dansyl group (Dan-B8.5-PAMAM). Our system detects bacteria in 20 min with a sensitivity of approximately 104 colony-forming units (CFU)·mL-1. Moreover, it does not require any peculiar technical skills or expensive materials. The driving force for bacteria recognition is the binding between terminal phenylboronic acids on the probe and bacteria's surface glycolipids, rather than electrostatic interactions. The aggregation caused by such binding reduces fluorescence. Even though our recognition method does not distinguish between live or dead bacteria, it shows selective antibacterial activity towards Gram-negative bacteria. This study may potentially contribute a new method for the convenient detection and killing of bacteria.


Assuntos
Dendrímeros , Antibacterianos , Ácidos Borônicos , Corantes , Bactérias Gram-Negativas
15.
Sensors (Basel) ; 21(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670022

RESUMO

Conventional pathogenic bacteria-detection methods are lab-bound, time-consuming and need trained personnel. Microelectrodes can be used to recognize harmful microorganisms by dielectric impedance spectroscopy. However, crucial for this spectroscopy method are the spatial dimensions and layout of the electrodes, as the corresponding distribution of the electric field defines the sensor system parameters such as sensitivity, SNR, and dynamic range. Therefore, a variety of sensor models are created and evaluated. FEM simulations in 2D and 3D are conducted for this impedimetric sensor. The authors tested differently shaped structures, verified the linear influence of the excitation amplitude and developed a mathematical concept for a quality factor that practically allows us to distinguish arbitrary sensor designs and layouts. The effect of guard electrodes blocking outer influences on the electric field are investigated, and essential configurations are explored. The results lead to optimized electronic sensors in terms of geometrical dimensions. Possible material choices for real sensors as well as design and layout recommendations are presented.


Assuntos
Bactérias/isolamento & purificação , Técnicas Biossensoriais , Espectroscopia Dielétrica , Microeletrodos , Impedância Elétrica
16.
Nano Lett ; 20(4): 2688-2694, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32119561

RESUMO

Simultaneous analysis based on encoded fluorophores suffers from potential crosstalk between fluorophores and the limited number of colors that can be practically resolved. Inspired by nontrivial temporal patterns in living organisms, we developed a DNA-templated probe by utilizing DNA polymerase (DNAP) for multiplexed detection of nucleic acids. These probes use differential delay times of signaling by a DNAP-mediated extension to distinguish different targets, which serve as the primers. Taking advantage of the high processivity and the controllable kinetics of DNAP, we find that multiplexed detection can be achieved in homogeneous solution using a single fluorophore. As a proof of concept, we developed assays for genomic DNA from four different bacteria. In addition, we designed and implemented probes to undergo a single oscillation in signal as an alternative way for multiplexing. We anticipate this approach will find broad applications not only in sensing but also in synthetic DNA nanosystems.


Assuntos
Bactérias/química , Sondas de DNA/química , DNA Bacteriano/análise , Corantes Fluorescentes/análise , Bactérias/genética , Bactérias/isolamento & purificação , Sondas de DNA/genética , DNA Bacteriano/genética , Ácidos Nucleicos/análise , Ácidos Nucleicos/genética , Reação em Cadeia da Polimerase
17.
Mikrochim Acta ; 187(10): 558, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914337

RESUMO

A single-tube method based on a dual-electrostatic interaction (EI) strategy for bacteria capture and DNA extraction was designed to enable the highly sensitive detection of nucleic acids. Specially designed magnetic nanoparticles were developed to meet the opposing requirements of a single-tube method, which exist between the strong EI required for efficient bacteria capture and the weak EI required for DNA extraction with minimal DNA adsorption. A dual-EI strategy for the single-tube (DESIGN) method was thus developed to integrate bacteria enrichment, bacteria cell lysis, and DNA recovery in a single tube, thereby minimizing precious sample loss and reducing handling time. Subsequently, we evaluated the performance with a variety of concentrations from 5 to 100 colony-forming units (CFU)/10 mL human urine and milk samples. The DESIGN method achieved the simple and sensitive detection of Salmonella enterica serovar Typhimurium in 10 mL of human urine and milk samples up to 5 CFU by quantitative PCR. Furthermore, the DESIGN method detected Brucella ovis and Escherichia coli from 10 mL of human urine with a detection limit up to 5 CFU/10 mL. Graphical abstract.


Assuntos
Bactérias Gram-Negativas/metabolismo , Nanopartículas/química , Bactérias Gram-Negativas/citologia , Humanos , Eletricidade Estática
18.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383934

RESUMO

Staphylococcus aureus is a bacterium which people have been in contact with for thousands of years. Its presence often leads to severe disorders of the respiratory and circulatory systems. The authors of this article present a prototype of a textronic sensor enabling the detection of this bacterium. This sensor was created using a process of physical vacuum deposition on a flexible textile substrate which can be implemented on clothing. With increasing numbers of bacterial colonies, changes in the sensor's electrical parameters were observed. The sensor's resistance reduced by 50% and the capacitance more than doubled within the first two days of starting bacterial cultures. Extensive changes in electrical parameters were observed at 100 Hz and 120 Hz of the measurement signal.


Assuntos
Staphylococcus aureus , Têxteis , Vácuo , Humanos , Dispositivos Eletrônicos Vestíveis
19.
Sensors (Basel) ; 20(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333831

RESUMO

When a centrifugation-enriched sample of 100 µL containing the surface-enhanced Raman scattering (SERS) tag-bound bacteria (Salmonella in this study) is siphoned onto a glass slide next to an embedded thermoelectric heating chip, such a sessile droplet is quickly evaporated. As the size of the sample droplet is significantly reduced during the heating process, ionic wind streams from a corona discharge needle, stationed above the sample, sweep across the liquid surface to produce centrifugal vortex flow. Tag-bound Salmonella in the sample are then dragged and trapped at the center of droplet bottom. Finally, when the sample is dried, unlike the "coffee ring" effect, the SERS tag-bound Salmonella is concentrated in one small spot to allow sensitive detection of a Raman signal. Compared with our previous electrohydrodynamic concentration device containing only a corona discharge needle, this thermoelectric evaporation-assisted device is more time-effective, with the time of concentrating and drying about 100 µL sample reduced from 2 h to 30 min. Hence, sample throughput can be accelerated with this device for practical use. It is also more sensitive, with SERS detection of a few cells of Salmonella in neat samples achievable. We also evaluated the feasibility of using this device to detect Salmonella in food samples without performing the culturing procedures. Having spiked a few Salmonella cells into ice cubes and lettuce leaves, we use filtration and ultracentrifugation steps to obtain enriched tag-bound Salmonella samples of 200 µL. After loading an aliquot of 100 µL of sample onto this concentration device, the SERS tag signals from samples of 100 g ice cubes containing two Salmonella cells and 20 g lettuce leaf containing 5 Salmonella cells can be successfully detected.


Assuntos
Análise de Alimentos/instrumentação , Calefação , Salmonella , Centrifugação , Filtração , Análise de Alimentos/métodos , Microbiologia de Alimentos , Análise Espectral Raman
20.
Sensors (Basel) ; 20(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403342

RESUMO

Salmonella is a main cause of foodborne illnesses and rapid screening of Salmonella is the key to prevent Salmonella outbreaks, however available detection methods either require a long time, or need complex pretreatment, or have low sensitivity. In this study, a microfluidic biosensor was developed for Salmonella detection using viscoelastic inertial microfluidics for separating magnetic bacteria from unbound magnetic nanoparticles (MNPs) and enzyme catalytic colorimetry for amplifying biological signals. The polyclonal antibodies and horseradish peroxidase (HRP) modified MNPs were first used to specifically capture Salmonella to form magnetic HRP-bacteria. Both magnetic HRP-bacteria and unbound MNPs were magnetically separated from background and resuspended in viscoelastic polyvinylpyrrolidone solution as sample flow. When sample flow was injected with polyvinylpyrrolidone sheath flow into a T-shaped microchannel, larger-sized magnetic HRP-bacteria could penetrate the sample flow, however smaller-sized MNPs remained in the sample flow due to weaker inertial lift force and elastic lift force, resulting in continuous-flow separation of magnetic HRP-bacteria. Finally, magnetic HRP-bacteria were collected and concentrated to catalyze tetramethyl benzidine, and absorbance was measured to determine the bacteria. This biosensor was able to detect Salmonella as low as 30 CFU/mL in 1 h and featured the advantages of shorter time due to a one-step immunoreaction, easier extension due to only one antibody and one label, and lower cost due to less expensive materials.


Assuntos
Técnicas Biossensoriais , Microfluídica , Salmonella typhimurium/isolamento & purificação , Anticorpos , Colorimetria , Peroxidase do Rábano Silvestre , Nanopartículas Magnéticas de Óxido de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA