RESUMO
The parathyroid hormone (PTH)-related protein (PTHrP) is indispensable for the development of mammary glands, placental calcium ion transport, tooth eruption, bone formation and bone remodeling, and causes hypercalcemia in patients with malignancy. Although mature forms of PTHrP in the body consist of splice variants of 139, 141, and 173 amino acids, our current understanding on how endogenous PTHrP transduces signals through its cognate G-protein coupled receptor (GPCR), the PTH type 1 receptor (PTHR), is largely derived from studies done with its N-terminal fragment, PTHrP1-36. Here, we demonstrate using various fluorescence imaging approaches at the single cell level to measure kinetics of (i) receptor activation, (ii) receptor signaling via Gs and Gq, and (iii) receptor internalization and recycling that the native PTHrP1-141 displays biased agonist signaling properties that are not mimicked by PTHrP1-36. Although PTHrP1-36 induces transient cAMP production, acute intracellular Ca2+ (iCa2+) release and ß-arrestin recruitment mediated by ligand-PTHR interactions at the plasma membrane, PTHrP1-141 triggers sustained cAMP signaling from the plasma membrane and fails to stimulate iCa2+ release and recruit ß-arrestin. Furthermore, we show that the molecular basis for biased signaling differences between PTHrP1-36 and properties of native PTHrP1-141 are caused by the stabilization of a singular PTHR conformation and PTHrP1-141 sensitivity to heparin, a sulfated glycosaminoglycan. Taken together, our results contribute to a better understanding of the biased signaling process of a native protein hormone acting in conjunction with a GPCR.
Assuntos
Receptor Tipo 1 de Hormônio Paratireóideo , AMP Cíclico/metabolismo , Heparina/metabolismo , Humanos , Ligantes , Conformação Proteica , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismoRESUMO
BACKGROUND: CCR6 chemokine receptor is an important target in inflammatory diseases. Th17 cells express CCR6 and a number of inflammatory cytokines, including IL-17 and IL-22, which are involved in the propagation of inflammatory immune responses. CCR6 antagonist would be a potential treatment for inflammatory diseases such as psoriasis or rheumatoid arthritis. The aim of this study is to develop an antagonistic monoclonal antibody (mAb) against human CCR6 receptor (hCCR6). RESULTS: We generate monoclonal antibodies against hCCR6 immunizing Balb/c mice with hCCR6 overexpressing cells. The antibodies were tested by flow cytometry for specific binding to hCCR6, cloned by limiting dilution and resulted in the isolation and purification monoclonal antibody 1C6. By ELISA and flow cytometry, was determined that the antibody obtained binds to hCCR6 N-terminal domain. The ability of 1C6 to neutralize hCCR6 signaling was tested and we determined that 1C6 antibody were able to block response in ß-arrestin recruitment assay with IC50 10.23 nM, but did not inhibit calcium mobilization. In addition, we found in a chemotaxis assay that 1C6 reduces the migration of hCCR6 cells to their ligand CCL20. Finally, we determined by RT-qPCR that the expression of IL-17A in Th17 cells treated with 1C6 was inhibited. CONCLUSIONS: In the present study, we applied whole cell immunization for successfully obtain an antibody that is capable to neutralize hCCR6 signaling and to reduce hCCR6 cells migration and IL-17 expression. These results provide an efficient approach to obtain therapeutic potential antibodies in the treatment of CCR6-mediated inflammatory diseases.
Assuntos
Anticorpos Monoclonais/imunologia , Quimiocina CCL20/imunologia , Interleucina-17/imunologia , Receptores CCR6/química , Receptores CCR6/imunologia , beta-Arrestinas/imunologia , Animais , Quimiocina CCL20/genética , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Receptores CCR6/genética , Transdução de Sinais , beta-Arrestinas/genéticaRESUMO
G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) are two important classes of cell surface receptors proven to be highly tractable as drug targets. Both receptor classes are involved in various complex (patho-) physiological processes in the human body including cellular growth and differentiation. More recently, accumulating data suggest that GPCR-induced activation of EGFR, the prototyp of RTKs represents a major mechanism in various cancers. The present review will focus on this cross-talk with particular emphasis on intracellular scaffold proteins regulating EGFR transactivation. It will give an overview about the current status of the research and future directions, highlight recent trends in the field, and discuss the potential of therapeutic strategies combining GPCR and EGFR targeting on the one hand and specific targeting of the cross-talk on the other hand in cancer therapy.
Assuntos
Receptores ErbB/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores ErbB/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Adrenérgicos/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Ativação Transcricional , beta-Arrestinas/metabolismoRESUMO
Receptor-G protein promiscuity is frequently observed in class A G protein-coupled receptors (GPCRs). In particular, GPCRs can couple with G proteins from different families (Gαs, Gαq/11, Gαi/o, and Gα12/13) or the same family subtypes. The molecular basis underlying the selectivity/promiscuity is not fully revealed. We recently reported the structures of kappa opioid receptor (KOR) in complex with the Gi/o family subtypes [Gαi1, GαoA, Gαz, and Gustducin (Gαg)] determined by cryo-electron microscopy (cryo-EM). The structural analysis, in combination with pharmacological studies, provides insights into Gi/o subtype selectivity. Given the conserved sequence identity and activation mechanism between different G protein families, the findings within Gi/o subtypes could be likely extended to other families. Understanding the KOR-Gi/o or GPCR-G protein selectivity will facilitate the development of more precise therapeutics targeting a specific G protein subtype.
Assuntos
Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G , Receptores Opioides kappa , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/química , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Ligação Proteica , Animais , Conformação Proteica , Modelos MolecularesRESUMO
Cytokines activate signaling via assembly of cell surface receptors, but it is unclear whether modulation of cytokine-receptor binding parameters can modify biological outcomes. We have engineered IL-6 variants with different affinities to gp130 to investigate how cytokine receptor binding dwell-times influence functional selectivity. Engineered IL-6 variants showed a range of signaling amplitudes and induced biased signaling, with changes in receptor binding dwell-times affecting more profoundly STAT1 than STAT3 phosphorylation. We show that this differential signaling arises from defective translocation of ligand-gp130 complexes to the endosomal compartment and competitive STAT1/STAT3 binding to phospho-tyrosines in gp130, and results in unique patterns of STAT3 binding to chromatin. This leads to a graded gene expression response and differences in ex vivo differentiation of Th17, Th1 and Treg cells. These results provide a molecular understanding of signaling biased by cytokine receptors, and demonstrate that manipulation of signaling thresholds is a useful strategy to decouple cytokine functional pleiotropy.
Assuntos
Receptor gp130 de Citocina/química , Interleucina-6/química , Fator de Transcrição STAT1/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo , Sítios de Ligação , Diferenciação Celular , Clonagem Molecular , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Endossomos/química , Endossomos/metabolismo , Expressão Gênica , Células HeLa , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Cinética , Modelos Moleculares , Fosforilação , Cultura Primária de Células , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/imunologiaRESUMO
During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.
Assuntos
Receptor CB2 de Canabinoide/agonistas , Regulação Alostérica , Animais , Humanos , Ligantes , Camundongos , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Transdução de SinaisRESUMO
CCL19 is more potent than CCL21 in inducing chemotaxis of human dendritic cells (DC). This difference is attributed to 1) a stronger interaction of the basic C-terminal tail of CCL21 with acidic glycosaminoglycans (GAGs) in the environment and 2) an autoinhibitory function of this C-terminal tail. Moreover, different receptor docking modes and tissue expression patterns of CCL19 and CCL21 contribute to fine-tuned control of CCR7 signaling. Here, we investigate the effect of the tail of CCL21 on chemokine binding to GAGs and on CCR7 activation. We show that transfer of CCL21-tail to CCL19 (CCL19CCL21-tail ) markedly increases binding of CCL19 to human dendritic cell surfaces, without impairing CCL19-induced intracellular calcium release or DC chemotaxis, although it causes reduced CCR7 internalization. The more potent chemotaxis induced by CCL19 and CCL19CCL21-tail compared to CCL21 is not transferred to CCL21 by replacing its N-terminus with that of CCL19 (CCL21CCL19-N-term ). Measurements of cAMP production in CHO cells uncover that CCL21-tail transfer (CCL19CCL21-tail ) negatively affects CCL19 potency, whereas removal of CCL21-tail (CCL21tailless ) increases signaling compared to full-length CCL21, indicating that the tail negatively affects signaling via cAMP. Similar to chemokine-driven calcium mobilization and chemotaxis, the potency of CCL21 in cAMP is not improved by transfer of the CCL19 N-terminus to CCL21 (CCL21CCL19-N-term ). Together these results indicate that ligands containing CCL21 core and C-terminal tail (CCL21 and CCL21CCL19-N-term ) are most restricted in their cAMP signaling; a phenotype attributed to a stronger GAG binding of CCL21 and defined structural differences between CCL19 and CCL21.
Assuntos
Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiotaxia/fisiologia , Células Dendríticas/metabolismo , Animais , Células CHO , Quimiocina CCL19/química , Quimiocina CCL21/química , Cricetinae , Cricetulus , Glicosaminoglicanos/metabolismo , Humanos , Ligantes , Ligação Proteica/fisiologia , Receptores CCR7/metabolismoRESUMO
Mechanisms of opioid tolerance have focused on adaptive modifications within cells containing opioid receptors, defined here as cellular allostasis, emphasizing regulation of the opioid receptor signalosome. We review additional regulatory and opponent processes involved in behavioral tolerance, and include mechanistic differences both between agonists (agonist bias), and between µ- and δ-opioid receptors. In a process we will refer to as pass-forward allostasis, cells modified directly by opioid drugs impute allostatic changes to downstream circuitry. Because of the broad distribution of opioid systems, every brain cell may be touched by pass-forward allostasis in the opioid-dependent/tolerant state. We will implicate neurons and microglia as interactive contributors to the cumulative allostatic processes creating analgesic and hedonic tolerance to opioid drugs.
Assuntos
Alostase/fisiologia , Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/fisiologia , Analgésicos Opioides/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Regulação para Baixo/fisiologia , Humanos , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/metabolismoRESUMO
Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, ß-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1.