Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4665-4671, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587938

RESUMO

Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.

2.
Environ Res ; 255: 119203, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38782347

RESUMO

The hydrogenation of CO2 to CH4 has gained considerable interest in terms of sustainable energy and environmental mitigation. In this regard, the present work aims to investigate the adsorptive concentration and CO2 methanation performance over CoFe and NiFe bimetallic catalysts supported on fumed alumina-silica SA96 support at 170-450 °C and under atmospheric pressure. The catalysts were prepared by wet impregnation method, subjected to calcination and further reduced with hydrogen, and their performance in CO2 methanation was investigated in a hydrogen-rich 2%CO2-55%H2-43%He gas mixture. In this study, we describe the crystal and mesoporous structures of the prepared catalysts by in-situ XRD and ex-situ nitrogen adsorption, evaluate the NiFe and CoFe metal surface states before and after catalysis by XPS, visualize the surface morphology by SEM, estimate the catalytic activity by gas chromatography, and investigate the adsorbed surface species, showing the presence of *HCOO/*HCO and *CO intermediates, determine two possible pathways of CH4 formation on the studied catalysts by temperature-programmed desorption mass spectrometry, and correlate the structural and surface properties with high CO2 conversions up to 100% and methanation selectivities up to 72%. The latter is related to changes in the elemental chemical states and surface composition of CoFe and NiFe nanocatalysts induced by treatment under reaction conditions, and the surface reconstruction during catalysis transfers the part of active 3d transition metals into the pores of the SA96 support. Our thorough characterization study with complementary techniques allowed us to conclude that this high activity is related to the formation of catalytically active Ni/Ni3Fe and Co/CoFeOx nanoscale crystallites under H2 reduction and their maintenance under CO2 methanation conditions. The successfully applied combination of CO2 chemisorption and thermodesorption techniques demonstrates the ability to adsorb the CO2 molecules by supported NiFe and CoFe nanocatalysts and the pure alumina-silica SA96 support.


Assuntos
Óxido de Alumínio , Dióxido de Carbono , Cobalto , Metano , Níquel , Dióxido de Silício , Propriedades de Superfície , Óxido de Alumínio/química , Catálise , Dióxido de Carbono/química , Metano/química , Níquel/química , Cobalto/química , Dióxido de Silício/química , Ferro/química , Adsorção
3.
Angew Chem Int Ed Engl ; 63(40): e202409001, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38990826

RESUMO

Formic acid (FA) dehydrogenation and CO2 hydrogenation to FA/formate represent promising methodologies for the efficient and clean storage and release of hydrogen, forming a CO2-neutral energy cycle. Here, we report the synthesis of highly dispersed and stable bimetallic Pd-based nanoparticles, immobilized on self-pillared silicalite-1 (SP-S-1) zeolite nanosheets using an incipient wetness co-impregnation technique. Owing to the highly accessible active sites, effective mass transfer, exceptional hydrophilicity, and the synergistic effect of the bimetallic species, the optimized PdCe0.2/SP-S-1 catalyst demonstrated unparalleled catalytic performance in both FA dehydrogenation and CO2 hydrogenation to formate. Remarkably, it achieved a hydrogen generation rate of 5974 molH2 molPd -1 h-1 and a formate production rate of 536 molformate molPd -1 h-1 at 50 °C, surpassing most previously reported heterogeneous catalysts under similar conditions. Density functional theory calculations reveal that the interfacial effect between Pd and cerium oxide clusters substantially reduces the activation barriers for both reactions, thereby increasing the catalytic performance. Our research not only showcases a compelling application of zeolite nanosheet-supported bimetallic nanocatalysts in CO2-mediated hydrogen storage and release but also contributes valuable insights towards the development of safe, efficient, and sustainable hydrogen technologies.

4.
Nanotechnology ; 34(30)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37100050

RESUMO

The present study highlights the comparative catalytic removal of 2,4,6-trichlorophenol (TCP) in the aqueous phase by binary nanoparticles in free as well as entangled forms. In brief, binary nanoparticles comprising Fe-Ni are prepared, characterized, and subsequently entangled in reduced graphene oxide (rGO) for better performances. Optimization studies on the mass of free and rGO-entangled binary nanoparticles with respect to TCP concentration and other environmental factors were carried out. Results suggested that free binary nanoparticles at 40 mg ml-1took 300 min to dechlorinate 600 ppm of TCP, whereas rGO-entangled Fe-Ni particles at the same mass took only 190 min to dechlorinate when the pH was maintained at near neutral. In addition, experiments on the reuse of the catalyst with respect to removal efficiency were carried out, and the results implied that, compared to free form, rGO-entangled nanoparticles exemplify more than 98% of removal efficacy even after 5 times of exposure to 600 ppm TCP concentration. The reduction in percentage removal was observed after the sixth exposure. A sequential dechlorination pattern was assessed and confirmed using high-performance liquid chromatography. Further, the phenol-enriched aqueous phase is exposed toBacillus licheniformisSL10, which degrades the phenol effectively within 24 h. In conclusion, the prepared binary nanoparticles, both in free as well as in rGO-entangled forms, effectively dechlorinate 2,4,6-TCP contaminations in the aqueous phase, but with differences in removal duration. Entanglement also makes it easier to reuse the catalyst. Furthermore, microbial phenol degradation allows the aqueous phase to be free of 2, 4, and 6-TCP contamination and allows for the reuse of treated water.

5.
Angew Chem Int Ed Engl ; 58(38): 13220-13230, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-30934165

RESUMO

Bimetallic nanocatalysts are key enablers of current chemical technologies, including car exhaust converters and fuel cells, and play a crucial role in industry to promote a wide range of chemical reactions. However, owing to significant characterization challenges, insights in the dynamic phenomena that shape and change the working state of the catalyst await further refinement. Herein, we discuss the atomic-scale processes leading to mono- and bimetallic nanoparticle formation and highlight the dynamics and kinetics of lifetime changes in bimetallic catalysts with showcase examples for Pt-based systems. We discuss how in situ and operando X-ray spectroscopy, scattering, and diffraction can be used as a complementary toolbox to interrogate the working principles of today's and tomorrow's bimetallic nanocatalysts.

6.
Adv Mater ; 34(18): e2110536, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194844

RESUMO

Smart contact lenses for continuous glucose monitoring (CGM) have great potential for huge clinical impact. To date, their development has been limited by challenges in accurate detection of glucose without hysteresis for tear glucose monitoring to track the blood glucose levels. Here, long-term robust CGM in diabetic rabbits is demonstrated by using bimetallic nanocatalysts immobilized in nanoporous hydrogels in smart contact lenses. After redox reaction of glucose oxidase, the nanocatalysts facilitate rapid decomposition of hydrogen peroxide and nanoparticle-mediated charge transfer with drastically improved diffusion via rapid swelling of nanoporous hydrogels. The ocular glucose sensors result in high sensitivity, fast response time, low detection limit, low hysteresis, and rapid sensor warming-up time. In diabetic rabbits, smart contact lens can detect tear glucose levels consistent with blood glucose levels measured by a glucometer and a CGM device, reflecting rapid concentration changes without hysteresis. The CGM in a human demonstrates the feasibility of smart contact lenses for further clinical applications.


Assuntos
Lentes de Contato , Diabetes Mellitus , Nanoporos , Animais , Glicemia , Automonitorização da Glicemia , Glucose , Hidrogéis , Coelhos
7.
ACS Sens ; 7(8): 2178-2187, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35901277

RESUMO

As the most widely used gas sensors, metal oxide semiconductor (MOS)-based chemiresistors have been facing great challenges in achieving ppb-level and selective detection of the target gas. The rational design and employment of bimetallic nanocatalysts (NCs) are expected to address this issue. In this work, the well-shaped and monodispersed AuPt NCs (diameter ≈ 9 nm) were functionalized on one-dimensional (1D) In2O3 nanofibers (NFs) to construct efficient gas sensors. The sensor demonstrated dual-selective and ppb-level detection for ozone (O3) and acetone (C3H6O) at different optimal working temperatures. For the possible application exploitation, a circuit was designed to monitor O3 concentration and provide warnings when the concentration safety limit (50 ppb) was exceeded. Moreover, simulated exhaled breath measurements were also carried out to diagnose diabetes through C3H6O concentration. The selective detection for O3 and C3H6O was further analyzed by principal component analysis (PCA). The drastically enhanced sensing performances were attributed to the synergistic catalytic effect of AuPt NCs. Both the "spillover effect" and the Schottky barrier at the interfaces of AuPt NCs and In2O3 NFs promoted the sensing processes of O3 and C3H6O.


Assuntos
Acetona , Ozônio , Acetona/análise , Catálise , Expiração , Óxidos
8.
Nanomaterials (Basel) ; 9(2)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704109

RESUMO

The electrochemical conversion of carbon dioxide (CO2) into gaseous or liquid fuels has the potential to store renewable energies and reduce carbon emissions. Here, we report a three-step synthesis using Cu⁻Ag bimetallic nanowire arrays as catalysts for electrochemical reduction of CO2. CuO/Cu2O nanowires were first grown by thermal oxidation of copper mesh in ambient air and then reduced by annealing in the presence of hydrogen to form Cu nanowires. Cu⁻Ag bimetallic nanowires were then produced via galvanic replacement between Cu nanowires and the Ag⁺ precursor. The Cu⁻Ag nanowires showed enhanced catalytic performance over Cu nanowires for electrochemical reduction of CO2, which could be ascribed to the incorporation of Ag into Cu nanowires leading to suppression of hydrogen evolution. Our work provides a method for tuning the selectivity of copper nanocatalysts for CO2 reduction by controlling their composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA