Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Adv Mater ; 32(6): e1903915, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31856352

RESUMO

Photothermal CO2 reduction technology has attracted tremendous interest as a solution for the greenhouse effect and energy crisis, and thereby it plays a critical role in solving environmental problems and generating economic benefits. In2 O3- x has emerged as a potential photothermal catalyst for CO2 conversion into CO via the light-driven reverse water gas shift reaction. However, it is still a challenge to modulate the structural and electronic characteristics of In2 O3 to enhance photothermocatalytic activity synergistically. In this work, a novel route to activate inert In(OH)3 into 2D black In2 O3- x nanosheets via photoinduced defect engineering is proposed. Theoretical calculations and experimental results verify the existence of bifunctional oxygen vacancies in the 2D black In2 O3- x nanosheets host, which enhances light harvesting and chemical adsorption of CO2 molecules dramatically, achieving 103.21 mmol gcat -1 h-1 with near-unity selectivity for CO generation and meanwhile excellent stability. This study reveals an exciting phenomenon that light is an ideal external stimulus on the layered In2 O3 system, and its electronic structure can be adjusted efficiently through photoinduced defect engineering; it can be anticipated that this synthesis strategy can be extended to wider application fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA