Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.254
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 100(4): 1467-1525, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191560

RESUMO

Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For a long time, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved, and ongoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e., controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems, particularly the eye and ear. Multiple efforts have been undertaken to restore lost or hampered function in the eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely, poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims to provide a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.


Assuntos
Perda Auditiva/terapia , Transtornos da Visão/terapia , Humanos , Optogenética , Próteses Visuais
2.
Proc Natl Acad Sci U S A ; 121(32): e2320251121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39078671

RESUMO

The primary visual cortex (V1) in blindness is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions specific to task demands. This would suggest that reorganized V1 assumes a role like multiple-demand system regions. Alternatively, varying patterns of plasticity in blind V1 may be attributed to individual factors, with different blind individuals recruiting V1 preferentially for different functions. In support of this, we recently showed that V1 functional connectivity (FC) varies greatly across blind individuals. But do these represent stable individual patterns of plasticity, or are they driven more by instantaneous changes, like a multiple-demand system now inhabiting V1? Here, we tested whether individual FC patterns from the V1 of blind individuals are stable over time. We show that over two years, FC from the V1 is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in V1 connectivity, this indicates that there may be a consistent role for V1 in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.


Assuntos
Cegueira , Plasticidade Neuronal , Humanos , Cegueira/fisiopatologia , Plasticidade Neuronal/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Córtex Visual Primário/fisiologia , Estudos Longitudinais , Córtex Visual/fisiopatologia , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Mapeamento Encefálico/métodos
3.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743626

RESUMO

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Rodopsina , Animais , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Camundongos , Rodopsina/genética , Rodopsina/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/genética , Miopia/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Escuridão , Transducina/genética , Transducina/metabolismo , Técnicas de Introdução de Genes , Modelos Animais de Doenças
4.
Hum Mol Genet ; 33(9): 802-817, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38297980

RESUMO

Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.


Assuntos
Distrofias de Cones e Bastonetes , Tubulina (Proteína) , Humanos , Camundongos , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Distrofias de Cones e Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Mutação
5.
Proc Natl Acad Sci U S A ; 120(13): e2220728120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943890

RESUMO

Spectral tuning of visual pigments often facilitates adaptation to new environments, and it is intriguing to study the visual ecology of pelagic sharks with secondarily expanded habitats. The whale shark, which dives into the deep sea of nearly 2,000 meters besides near-surface filter feeding, was previously shown to possess the 'blue-shifted' rhodopsin (RHO), which is a signature of deep-sea adaptation. In this study, our spectroscopy of recombinant whale shark RHO mutants revealed that this blue shift is caused dominantly by an unprecedented spectral tuning site 94. In humans, the mutation at the site causes congenital stationary night blindness (CSNB) by reducing the thermal stability of RHO. Similarly, the RHO of deep-diving whale shark has reduced thermal stability, which was experimentally shown to be achieved by site 178 and 94. RHOs having the natural substitution at site 94 are also found in some Antarctic fishes, suggesting that the blue shift by the substitution at the CSNB site associated with the reduction in thermal stability might be allowed in cold-water deep-sea habitats.


Assuntos
Rodopsina , Tubarões , Humanos , Animais , Rodopsina/genética , Mutação , Tubarões/genética , Regiões Antárticas
6.
Proc Natl Acad Sci U S A ; 120(49): e2310156120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015842

RESUMO

Motion perception is a fundamental sensory task that plays a critical evolutionary role. In vision, motion processing is classically described using a motion energy model with spatiotemporally nonseparable filters suited for capturing the smooth continuous changes in spatial position over time afforded by moving objects. However, it is still not clear whether the filters underlying auditory motion discrimination are also continuous motion detectors or infer motion from comparing discrete sound locations over time (spatiotemporally separable). We used a psychophysical reverse correlation paradigm, where participants discriminated the direction of a motion signal in the presence of spatiotemporal noise, to determine whether the filters underlying auditory motion discrimination were spatiotemporally separable or nonseparable. We then examined whether these auditory motion filters were altered as a result of early blindness. We found that both sighted and early blind individuals have separable filters. However, early blind individuals show increased sensitivity to auditory motion, with reduced susceptibility to noise and filters that were more accurate in detecting motion onsets/offsets. Model simulations suggest that this reliance on separable filters is optimal given the limited spatial resolution of auditory input.


Assuntos
Percepção de Movimento , Pessoas com Deficiência Visual , Humanos , Visão Ocular , Cegueira , Percepção Auditiva , Estimulação Acústica
7.
Proc Natl Acad Sci U S A ; 120(19): e2207025120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126677

RESUMO

The visual system develops abnormally when visual input is absent or degraded during a critical period early in life. Restoration of the visual input later in life is generally thought to have limited benefit because the visual system will lack sufficient plasticity to adapt to and utilize the information from the eyes. Recent evidence, however, shows that congenitally blind adolescents can recover both low-level and higher-level visual function following surgery. In this study, we assessed behavioral performance in both a visual acuity and a face perception task alongside longitudinal structural white matter changes in terms of fractional anisotropy (FA) and mean diffusivity (MD). We studied congenitally blind patients with dense bilateral cataracts, who received cataract surgery at different stages of adolescence. Our goal was to differentiate between age- and surgery-related changes in both behavioral performance and structural measures to identify neural correlates which might contribute to recovery of visual function. We observed surgery-related long-term increases of structural integrity of late-visual pathways connecting the occipital regions with ipsilateral fronto-parieto-temporal regions or homotopic contralateral areas. Comparison to a group of age-matched healthy participants indicated that these improvements went beyond the expected changes in FA and MD based on maturation alone. Finally, we found that the extent of behavioral improvement in face perception was mediated by changes in structural integrity in late visual pathways. Our results suggest that sufficient plasticity remains in adolescence to partially overcome abnormal visual development and help localize the sites of neural change underlying sight recovery.


Assuntos
Catarata , Substância Branca , Adolescente , Humanos , Cegueira , Visão Ocular , Olho
8.
Proc Natl Acad Sci U S A ; 120(42): e2307380120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831740

RESUMO

In patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes. In particular, elevating the return electrode on top of the honeycomb-shaped vertical walls surrounding each pixel extends the electric field vertically and decouples its penetration into tissue from the pixel width. This approach relies on migration of the retinal cells into the honeycomb wells. Here, we demonstrate that majority of the inner retinal neurons migrate into the 25 µm deep wells, leaving the third-order neurons, such as amacrine and ganglion cells, outside. This enables selective stimulation of the second-order neurons inside the wells, thus preserving the intraretinal signal processing in prosthetic vision. Comparable glial response to that with flat implants suggests that migration and separation of the retinal cells by the walls does not cause additional stress. Furthermore, retinal migration into the honeycombs does not negatively affect its electrical excitability, while grating acuity matches the pixel pitch down to 40 µm and reaches the 27 µm limit of natural resolution in rats with 20 µm pixels. These findings pave the way for 3-D subretinal prostheses with pixel sizes of cellular dimensions.


Assuntos
Poríferos , Neurônios Retinianos , Próteses Visuais , Humanos , Ratos , Animais , Implantação de Prótese , Retina/fisiologia , Visão Ocular , Estimulação Elétrica
9.
Proc Natl Acad Sci U S A ; 120(22): e2214930120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216543

RESUMO

It is widely believed that observers can fail to notice clearly visible unattended objects, even if they are moving. Here, we created parametric tasks to test this belief and report the results of three high-powered experiments (total n = 4,493) indicating that this effect is strongly modulated by the speed of the unattended object. Specifically, fast-but not slow-objects are readily noticeable, whether they are attended or not. These results suggest that fast motion serves as a potent exogenous cue that overrides task-focused attention, showing that fast speeds, not long exposure duration or physical salience, strongly diminish inattentional blindness effects.


Assuntos
Gorilla gorilla , Percepção Visual , Humanos , Animais , Atenção , Cognição , Cegueira
10.
J Neurosci ; 44(38)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39151954

RESUMO

The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.


Assuntos
Ritmo alfa , Camundongos Endogâmicos C57BL , Córtex Visual , Animais , Camundongos , Córtex Visual/fisiologia , Masculino , Ritmo alfa/fisiologia , Eletroencefalografia , Enucleação Ocular , Feminino , Neurônios/fisiologia , Privação Sensorial/fisiologia
11.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38897817

RESUMO

Recent work suggests that the adult human brain is very adaptable when it comes to sensory processing. In this context, it has also been suggested that structural "blueprints" may fundamentally constrain neuroplastic change, e.g. in response to sensory deprivation. Here, we trained 12 blind participants and 14 sighted participants in echolocation over a 10-week period, and used MRI in a pre-post design to measure functional and structural brain changes. We found that blind participants and sighted participants together showed a training-induced increase in activation in left and right V1 in response to echoes, a finding difficult to reconcile with the view that sensory cortex is strictly organized by modality. Further, blind participants and sighted participants showed a training induced increase in activation in right A1 in response to sounds per se (i.e. not echo-specific), and this was accompanied by an increase in gray matter density in right A1 in blind participants and in adjacent acoustic areas in sighted participants. The similarity in functional results between sighted participants and blind participants is consistent with the idea that reorganization may be governed by similar principles in the two groups, yet our structural analyses also showed differences between the groups suggesting that a more nuanced view may be required.


Assuntos
Córtex Auditivo , Cegueira , Imageamento por Ressonância Magnética , Córtex Visual , Humanos , Cegueira/fisiopatologia , Cegueira/diagnóstico por imagem , Masculino , Adulto , Feminino , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Córtex Auditivo/fisiopatologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adulto Jovem , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Mapeamento Encefálico , Pessoa de Meia-Idade , Percepção Auditiva/fisiologia , Ecolocação/fisiologia
12.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39152673

RESUMO

Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.


Assuntos
Cegueira , Frequência Cardíaca , Lobo Occipital , Humanos , Masculino , Feminino , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/fisiologia , Adulto , Frequência Cardíaca/fisiologia , Cegueira/fisiopatologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Adulto Jovem , Interocepção/fisiologia
13.
Proc Natl Acad Sci U S A ; 119(13): e2117038119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35316139

RESUMO

SignificanceCanine models of inherited retinal diseases have helped advance adeno-associated virus (AAV)-based gene therapies targeting specific cells in the outer retina for treating blinding diseases in patients. However, therapeutic targeting of diseases such as congenital stationary night blindness (CSNB) that exhibit defects in ON-bipolar cells (ON-BCs) of the midretina remains underdeveloped. Using a leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) mutant canine model of CSNB exhibiting ON-BC dysfunction, we tested the ability of cell-specific AAV capsids and promotors to specifically target ON-BCs for gene delivery. Subretinal injection of one vector demonstrated safety and efficacy with robust and stable rescue of electroretinography signals and night vision up to 1 y, paving the way for clinical trials in patients.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Cegueira Noturna , Animais , Dependovirus/genética , Cães , Eletrorretinografia , Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Terapia Genética , Humanos , Proteínas de Membrana/genética , Miopia , Cegueira Noturna/genética , Cegueira Noturna/terapia
14.
J Neurosci ; 43(24): 4470-4486, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37127360

RESUMO

In the investigation of the brain areas involved in human spatial navigation, the traditional focus has been on visually guided navigation in sighted people. Consequently, it is unclear whether the involved areas also support navigational abilities in other modalities. We explored this possibility by testing whether the occipital place area (OPA), a region associated with visual boundary-based navigation in sighted people, has a similar role in echo-acoustically guided navigation in blind human echolocators. We used fMRI to measure brain activity in 6 blind echolocation experts (EEs; five males, one female), 12 blind controls (BCs; six males, six females), and 14 sighted controls (SCs; eight males, six females) as they listened to prerecorded echolocation sounds that conveyed either a route taken through one of three maze environments, a scrambled (i.e., spatiotemporally incoherent) control sound, or a no-echo control sound. We found significantly greater activity in the OPA of EEs, but not the control groups, when they listened to the coherent route sounds relative to the scrambled sounds. This provides evidence that the OPA of the human navigation brain network is not strictly tied to the visual modality but can be recruited for nonvisual navigation. We also found that EEs, but not BCs or SCs, recruited early visual cortex for processing of echo acoustic information. This is consistent with the recent notion that the human brain is organized flexibly by task rather than by specific modalities.SIGNIFICANCE STATEMENT There has been much research on the brain areas involved in visually guided navigation, but we do not know whether the same or different brain regions are involved when blind people use a sense other than vision to navigate. In this study, we show that one part of the brain (occipital place area) known to play a specific role in visually guided navigation is also active in blind human echolocators when they use reflected sound to navigate their environment. This finding opens up new ways of understanding how people navigate, and informs our ability to provide rehabilitative support to people with vision loss.


Assuntos
Cegueira , Ecolocação , Masculino , Animais , Humanos , Feminino , Visão Ocular , Percepção Auditiva , Lobo Occipital , Imageamento por Ressonância Magnética
15.
J Neurosci ; 43(6): 1018-1026, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36604169

RESUMO

Hemianopia (unilateral blindness), a common consequence of stroke and trauma to visual cortex, is a debilitating disorder for which there are few treatments. Research in an animal model has suggested that visual-auditory stimulation therapy, which exploits the multisensory architecture of the brain, may be effective in restoring visual sensitivity in hemianopia. It was tested in two male human patients who were hemianopic for at least 8 months following a stroke. The patients were repeatedly exposed to congruent visual-auditory stimuli within their blinded hemifield during 2 h sessions over several weeks. The results were dramatic. Both recovered the ability to detect and describe visual stimuli throughout their formerly blind field within a few weeks. They could also localize these stimuli, identify some of their features, and perceive multiple visual stimuli simultaneously in both fields. These results indicate that the multisensory therapy is a rapid and effective method for restoring visual function in hemianopia.SIGNIFICANCE STATEMENT Hemianopia (blindness on one side of space) is widely considered to be a permanent disorder. Here, we show that a simple multisensory training paradigm can ameliorate this disorder in human patients.


Assuntos
Hemianopsia , Acidente Vascular Cerebral , Animais , Humanos , Masculino , Hemianopsia/terapia , Percepção Visual/fisiologia , Visão Ocular , Encéfalo , Estimulação Luminosa/métodos , Cegueira/terapia
16.
Neuroimage ; 300: 120852, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39265958

RESUMO

Natural Braille reading presents significant challenges to the brain networks of late blind individuals, yet its underlying neural mechanisms remain largely unexplored. Using natural Braille texts in behavioral assessments and functional MRI, we sought to pinpoint the neural pathway and information flow crucial for Braille reading performance in late blind individuals. In the resting state, we discovered a unique neural connection between the higher-order 'visual' cortex, the lateral occipital cortex (LOC), and the inferior frontal cortex (IFC) in late blind individuals, but not in sighted controls. The left-lateralized LOC-IFC connectivity was correlated with individual Braille reading proficiency. Prolonged Braille reading practice led to increased strength of this connectivity. During a natural Braille reading task, bidirectional information flow between the LOC and the IFC was positively modulated, with a predominantly stronger top-down modulation from the IFC to the LOC. This stronger top-down modulation contributed to higher Braille reading proficiency. We thus proposed a two-predictor multiple regression model to predict individual Braille reading proficiency, incorporating both static connectivity and dynamic top-down communication between the LOC-IFC link. This work highlights the dual contributions of the occipito-frontal neural pathway and top-down cognitive strategy to superior natural Braille reading performance, offering guidance for training late blind individuals.


Assuntos
Cegueira , Imageamento por Ressonância Magnética , Vias Neurais , Lobo Occipital , Leitura , Humanos , Cegueira/fisiopatologia , Cegueira/diagnóstico por imagem , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Lobo Occipital/fisiologia , Lobo Occipital/diagnóstico por imagem , Vias Neurais/fisiologia , Auxiliares Sensoriais , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Lobo Frontal/fisiologia , Lobo Frontal/diagnóstico por imagem
17.
Neuroimage ; 286: 120508, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181867

RESUMO

Sleep plays a crucial role in brain development, sensory information processing, and consolidation. Sleep spindles are markers of these mechanisms as they mirror the activity of the thalamocortical circuits. Spindles can be subdivided into two groups, slow (10-13 Hz) and fast (13-16 Hz), which are each associated with different functions. Specifically, fast spindles oscillate in the high-sigma band and are associated with sensorimotor processing, which is affected by visual deprivation. However, how blindness influences spindle development has not yet been investigated. We recorded nap video-EEG of 50 blind/severely visually impaired (BSI) and 64 sighted children aged 5 months to 6 years old. We considered aspects of both macro- and micro-structural spindles. The BSI children lacked the evolution of developmental spindles within the central area. Specifically, young BSI children presented low central high-sigma and high-beta (25-30 Hz) event-related spectral perturbation and showed no signs of maturational decrease. High-sigma and high-beta activity in the BSI group correlated with clinical indices predicting perceptual and motor disorders. Our findings suggest that fast spindles are pivotal biomarkers for identifying an early developmental deviation in BSI children. These findings are critical for initial therapeutic intervention.


Assuntos
Encéfalo , Sono , Criança , Humanos , Eletroencefalografia , Cognição , Cegueira , Fases do Sono
18.
Neuroimage ; 299: 120844, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39260781

RESUMO

Congenital blindness offers a unique opportunity to investigate human brain plasticity. The influence of congenital visual loss on the asymmetry of the structural network remains poorly understood. To address this question, we recruited 21 participants with congenital blindness (CB) and 21 age-matched sighted controls (SCs). Employing diffusion and structural magnetic resonance imaging, we constructed hemispheric white matter (WM) networks using deterministic fiber tractography and applied graph theory methodologies to assess topological efficiency (i.e., network global efficiency, network local efficiency, and nodal local efficiency) within these networks. Statistical analyses revealed a consistent leftward asymmetry in global efficiency across both groups. However, a different pattern emerged in network local efficiency, with the CB group exhibiting a symmetric state, while the SC group showed a leftward asymmetry. Specifically, compared to the SC group, the CB group exhibited a decrease in local efficiency in the left hemisphere, which was caused by a reduction in the nodal properties of some key regions mainly distributed in the left occipital lobe. Furthermore, interhemispheric tracts connecting these key regions exhibited significant structural changes primarily in the splenium of the corpus callosum. This result confirms the initial observation that the reorganization in asymmetry of the WM network following congenital visual loss is associated with structural changes in the corpus callosum. These findings provide novel insights into the neuroplasticity and adaptability of the brain, particularly at the network level.


Assuntos
Cegueira , Imagem de Tensor de Difusão , Plasticidade Neuronal , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Masculino , Feminino , Plasticidade Neuronal/fisiologia , Adulto , Cegueira/congênito , Cegueira/fisiopatologia , Cegueira/diagnóstico por imagem , Cegueira/patologia , Adulto Jovem , Imagem de Tensor de Difusão/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Imageamento por Ressonância Magnética , Adolescente , Privação Sensorial/fisiologia
19.
Neuroimage ; 299: 120799, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39182710

RESUMO

A long-standing question concerns whether sensory input can reach semantic stages of processing in the absence of attention and awareness. Here, we examine whether the N400, an event related potential associated with semantic processing, can occur under conditions of inattentional blindness. By employing a novel three-phase inattentional blindness paradigm designed to maximise the opportunity for detecting an N400, we found no evidence for it when participants were inattentionally blind to the eliciting stimuli (related and unrelated word pairs). In contrast, participants noticed the same task-irrelevant word pairs when minimal attention was allocated to them, and a small N400 became evident. When the same stimuli were fully attended and relevant to the task, a robust N400 was observed. In addition to univariate ERP measures, multivariate decoding analyses were unable to classify related from unrelated word pairs when observers were inattentionally blind to the words, with decoding reaching above-chance levels only when the words were (at least minimally) attended. By comparison, decoding reached above-chance levels when contrasting word pairs with non-word stimuli, even when participants were inattentionally blind to these stimuli. Our results also replicated several previous studies by finding a "visual awareness negativity" (VAN) that distinguished task-irrelevant stimuli that participants noticed compared with those that were not perceived, and a P3b (or "late positivity") that was evident only when the stimuli were task relevant. Together, our findings suggest that semantic processing might require at least a minimal amount of attention.


Assuntos
Atenção , Eletroencefalografia , Potenciais Evocados , Semântica , Humanos , Masculino , Feminino , Atenção/fisiologia , Adulto Jovem , Eletroencefalografia/métodos , Adulto , Potenciais Evocados/fisiologia , Encéfalo/fisiologia
20.
Eur J Neurosci ; 60(4): 4624-4638, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39034499

RESUMO

Recent studies have shown that during the typical resting-state, echo planar imaging (EPI) time series obtained from the eye orbit area correlate with brain regions associated with oculomotor control and lower-level visual cortex. Here, we asked whether congenitally blind (CB) shows similar patterns, suggesting a hard-wired constraint on connectivity. We find that orbital EPI signals in CB do correlate with activity in the motor cortex, but less so with activity in the visual cortex. However, the temporal patterns of this eye movement-related signal differed strongly between CB and sighted controls. Furthermore, in CB, a few participants showed uncoordinated orbital EPI signals between the two eyes, each correlated with activity in different brain networks. Our findings suggest a retained circuitry between motor cortex and eye movements in blind, but also a moderate reorganization due to the absence of visual input, and the inability of CB to control their eye movements or sense their positions.


Assuntos
Cegueira , Movimentos Oculares , Humanos , Cegueira/fisiopatologia , Cegueira/congênito , Movimentos Oculares/fisiologia , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Córtex Motor/diagnóstico por imagem , Córtex Visual/fisiopatologia , Córtex Visual/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Imagem Ecoplanar/métodos , Adulto Jovem , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA