Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
J Mammary Gland Biol Neoplasia ; 29(1): 12, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913216

RESUMO

Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.


Assuntos
Neoplasias da Mama , Modelos Animais de Doenças , Animais , Feminino , Ratos , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Receptores de Estrogênio/metabolismo
2.
Apoptosis ; 29(3-4): 277-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38001342

RESUMO

Breast cancer is a prevalent and severe form of cancer that affects women all over the world. The incidence and mortality of breast cancer continue to rise due to factors such as population growth and the aging of the population. There is a growing area of research focused on a cell death mechanism known as PANoptosis. This mechanism is primarily regulated by the PANoptosome complex and displays important characteristics of cell death, including pyroptosis, apoptosis, and/or necroptosis, without being strictly defined by the cell death pathway. PANoptosis acts as a defensive response to external stimuli and pathogens, contributing to the maintenance of cellular homeostasis and overall stability. Increasing evidence suggests that programmed cell death (PCD) plays an important role in the development of breast cancer, and PANoptosis, as a novel form of PCD, may be a crucial factor in the development of breast cancer, potentially leading to the identification of new therapeutic strategies. Therefore, the concept of PANoptosis not only deepens our understanding of PCD, but also opens up new avenues for treating malignant diseases, including breast cancer. This review aims to provide an overview of the definition of PANoptosis, systematically explore the interplay between PANoptosis and various forms of PCD, and discuss its implications for breast cancer. Additionally, it delves into the current progress and future directions of PANoptosis research in the context of breast cancer, establishing a theoretical foundation for the development of molecular targets within critical signaling pathways related to PANoptosis, as well as multi-target combination therapy approaches, with the goal of inducing PANoptosis as part of breast cancer treatment.


Assuntos
Apoptose , Neoplasias da Mama , Feminino , Humanos , Apoptose/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Morte Celular , Piroptose/genética , Envelhecimento
3.
Breast Cancer Res Treat ; 204(3): 453-463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180699

RESUMO

BACKGROUND: Invasive lobular carcinoma (ILC) is distinct from invasive ductal carcinoma (IDC) in terms of their hormonal microenvironments that may require different therapeutic strategies. We previously reported that selective estrogen receptor modulator (SERM) function requires F-box protein 22 (Fbxo22). Here, we investigated the role of Fbxo22 as a potential biomarker contributing to the resistance to endocrine therapy in ILC. METHODS: A total of 302 breast cancer (BC) patients including 150 ILC were recruited in the study. Fbxo22 expression and clinical information were analyzed to elucidate whether Fbxo22 negativity could be a prognostic factor or there were any correlations among clinical variables and SERM efficacy. RESULTS: Fbxo22 negativity was significantly higher in ILC compared with IDC (58.0% vs. 27.0%, P < 0.001) and higher in postmenopausal patients than premenopausal patients (64.1% vs. 48.2%, P = 0.041). In the ILC cohort, Fbxo22-negative patients had poorer overall survival (OS) than Fbxo22-positive patients, with 10-year OS rates of 77.4% vs. 93.6% (P = 0.055). All patients treated with SERMs, Fbxo22 negativity resulted in a poorer outcome, with 10-year OS rates of 81.3% vs. 92.3% (P = 0.032). In multivariate analysis regarding recurrence-free survival (RFS) in ILC patients, Fbxo22 status was independently predictive of survival as well as lymph node metastasis. CONCLUSION: Fbxo22 negativity significantly impacts on survival in BC patients with IDC and ILC, and the disadvantage was enhanced among ILC postmenopausal women or patients treated with SERMs. The findings suggest that different therapeutic strategies might be needed according to the different histopathological types when considering adjuvant endocrine therapy.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Lobular/patologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Carcinoma Ductal de Mama/patologia , Resultado do Tratamento , Microambiente Tumoral
4.
Cell Biol Int ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318044

RESUMO

Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.

5.
Biomarkers ; : 1-8, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39317236

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most common malignancies in women. Exosomes are widely found in body fluids and carry microRNAs (miRNAs) that reflect the biological properties of the parental cells. Our study aimed to investigate the differential expression of miR-200c in BC serum exosomes and its diagnostic value. METHODOLOGY: miRNA profiles in culture supernatant exosomes of normal mammary epithelial cells MCF-10A and BC cells (MCF-7, MDA-MB-231, MCF-7 Taxol) were examined by miRNA deep sequencing to screen for significantly differentially expressed miRNAs; Transmission electron microscopy (TEM), Nanoparticle tracking analysis (NTA), and Western blot were used to identify exosomes; qPCR was used to detect the expression level of miR-200c in cellular exosomes and serum exosomes; The efficacy of individual and combined tests of each indicator to diagnose BC was evaluated using receiver operating characteristic (ROC) curves. RESULTS: We identified typical exosome features by TEM, NTA and Western blot, indicating successful exosome extraction. Then our miRNA sequencing results and qRT-PCR experiments showed that miR-200c was significantly down-regulated in BC cell exosomes. In addition, we divided the clinical serum samples into two cohorts according to region, and in independent cohort I, the serum exosomal miR-200c levels of BC patients were significantly lower than those of healthy controls. In cohort II, serum exosomal miR-200c expression was significantly lower in the BC group than in the control and benign breast disease (BBD) groups, whereas miR-200c expression in the BBD group was not statistically different from that in the control group. ROC analyses in both independent cohorts confirmed that serum exosomal miR-200c could differentiate between patients with and without BC disease and could be used as an early diagnostic marker for BC disease. CONCLUSION: Serum exosome miR-200c can be used as a potential biomarker for the diagnosis of BC, and combined with conventional serum diagnostic markers AFP, CA125 and CA153 can help to improve diagnostic efficiency.

6.
Environ Res ; 262(Pt 2): 119909, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39222733

RESUMO

BACKGROUND: As persistent organic pollutants (POPs), perfluoroalkyl substances (PFAS) may potentially impact human health. Our study aimed to investigate the prospective association between PFAS exposure and the incidence risk of breast cancer in females. METHODS: By fully following the Jinchang Cohort after a decade, we conducted this nested case-control study with 135 incidence cases of breast cancer (BC) and 540 bias-paired controls. The PFAS levels were tested by baseline serum samples. Conditional logistic regression and a restricted cubic spline model were employed to investigate the BC incidence risks and the dose-response associated with single PFAS component exposure. Furthermore, the Quantile g-computation model (Qgc), random forest model (RFM), and bayesian kernel machine regression models (BKMR) were integrated to estimate the mixed effects of PFAS exposure on the incidence risk of BC. RESULTS: Exposures to specific PFAS components were positively associated with an increased incidence risk of breast cancer. By grouping the study population into different baseline menopausal statuses, PFHxS, PFNA, PFBA, PFUdA, PFOS, and PFDA demonstrated a similarly positive correlation with BC incidence risks. However, the increased incidence risks of BC associated with PFOA, PFOS, PFUdA, and 9CL-PF3ONS exposure were exclusively found in the premenopausal population. Both BKMR and Qgc revealed that exposure to mixed PFAS was associated with an increased risk of breast cancer, with Qgc specifically indicating an odds ratio (OR) of 2.21 (95% CI: 1.53, 3.19). Random forests showed that PFBA, PFOS, PFHxS, and PFDA emerged as predominant factors potentially influencing breast cancer incidence. CONCLUSION: Our findings suggest a strong association between PFAS exposure and the incidence of breast cancer. Premenopausal women should exercise more caution regarding PFAS exposure.

7.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732200

RESUMO

We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice.


Assuntos
Neoplasias da Mama , Nanotecnologia , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias da Mama/diagnóstico , Feminino , Nanotecnologia/métodos , Animais , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Robótica/métodos , Nanomedicina Teranóstica/métodos , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
8.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256136

RESUMO

Approximately 30% of early-stage breast cancer (BC) patients experience recurrence after systemic chemotherapy; thus, understanding therapy resistance is crucial in developing more successful treatments. Here, we investigated the mechanisms underlying resistance to combined anthracycline-taxane treatment by comparing gene expression patterns with subsequent therapeutic responses. We established a cohort of 634 anthracycline-taxane-treated patients with pathological complete response (PCR) and a separate cohort of 187 patients with relapse-free survival (RFS) data, each having transcriptome-level expression data of 10,017 unique genes. Patients were categorized as responders and non-responders based on their PCR and RFS status, and the expression for each gene was compared between the two groups using a Mann-Whitney U-test. Statistical significance was set at p < 0.05, with fold change (FC) > 1.44. Altogether, 224 overexpressed genes were identified in the tumor samples derived from the patients without PCR; among these, the gene sets associated with xenobiotic metabolism (e.g., CYP3A4, CYP2A6) exhibited significant enrichment. The genes ORAI3 and BCAM differentiated non-responders from responders with the highest AUC values (AUC > 0.75, p < 0.0001). We identified 51 upregulated genes in the tumor samples derived from the patients with relapse within 60 months, participating primarily in inflammation and innate immune responses (e.g., LYN, LY96, ANXA1). Furthermore, the amino acid transporter SLC7A5, distinguishing non-responders from responders, had significantly higher expression in tumors and metastases than in normal tissues (Kruskal-Wallis p = 8.2 × 10-20). The identified biomarkers underscore the significance of tumor metabolism and microenvironment in treatment resistance and can serve as a foundation for preclinical validation studies.


Assuntos
Antraciclinas , Hidrocarbonetos Aromáticos com Pontes , Neoplasias Inflamatórias Mamárias , Taxoides , Humanos , Antraciclinas/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Quimioterapia Combinada , Antibióticos Antineoplásicos , Inflamação/genética , Microambiente Tumoral
9.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338903

RESUMO

Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.


Assuntos
Neoplasias da Mama , Ecossistema , Humanos , Feminino , Mastectomia , Evolução Biológica , Biologia do Desenvolvimento
10.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125591

RESUMO

Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10-3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan-Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804-6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Epóxido Hidrolases , Humanos , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/genética , Pessoa de Meia-Idade , Prognóstico , Biomarcadores Tumorais/metabolismo , Idoso , Adulto , Núcleo Celular/metabolismo , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Curva ROC , Idoso de 80 Anos ou mais , Estimativa de Kaplan-Meier
11.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000600

RESUMO

Women with type 2 diabetes (T2D) have a higher risk of being diagnosed with breast cancer and have worse survival than non-diabetic women if they do develop breast cancer. However, more research is needed to elucidate the biological underpinnings of these relationships. Here, we found that forkhead box A1 (FOXA1), a forkhead family transcription factor, and metformin (1,1-dimethylbiguanide hydrochloride), a medication used to treat T2D, may impact hormone-receptor-positive (HR+) breast cancer (BC) tumor cell growth and metastasis. Indeed, fourteen diabetes-associated genes are highly expressed in only three HR+ breast cancer cell lines but not the other subtypes utilizing a 53,805 gene database obtained from NCBI GEO. Among the diabetes-related genes, FOXA1, MTA3, PAK4, FGFR3, and KIF22 were highly expressed in HR+ breast cancer from 4032 breast cancer patient tissue samples using the Breast Cancer Gene Expression Omnibus. Notably, elevated FOXA1 expression correlated with poorer overall survival in patients with estrogen-receptor-positive/progesterone-receptor-positive (ER+/PR+) breast cancer. Furthermore, experiments demonstrated that loss of the FOXA1 gene inhibited tumor proliferation and invasion in vitro using MCF-7 and T47D HR+ breast cancer cell lines. Metformin, an anti-diabetic medication, significantly suppressed tumor cell growth in MCF-7 cells. Additionally, either metformin treatment or FOXA1 gene deletion enhanced tamoxifen-induced tumor growth inhibition in HR+ breast cancer cell lines within an ex vivo three-dimensional (3D) organoid model. Therefore, the diabetes-related medicine metformin and FOXA1 gene inhibition might be a new treatment for patients with HR+ breast cancer when combined with tamoxifen, an endocrine therapy.


Assuntos
Neoplasias da Mama , Proliferação de Células , Fator 3-alfa Nuclear de Hepatócito , Metformina , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Metformina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Invasividade Neoplásica , Células MCF-7 , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética
12.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612922

RESUMO

Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Medicina de Precisão , Mama , Oncologia
13.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273251

RESUMO

Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms-IGF-1Ea, IGF-1Eb, and IGF-1Ec-act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets.


Assuntos
Neoplasias da Mama , Fator de Crescimento Insulin-Like I , Isoformas de Proteínas , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Isoformas de Proteínas/metabolismo , Feminino , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Transição Epitelial-Mesenquimal , Animais , Proliferação de Células , Peptídeos Semelhantes à Insulina
14.
Molecules ; 29(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275004

RESUMO

Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Processamento de Proteína Pós-Traducional , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Biomarcadores Tumorais/metabolismo , Feminino , Proteoma/metabolismo
15.
J Proteome Res ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37497607

RESUMO

The lipid metabolism adaptations of estrogen and progesterone receptor-positive breast cancer tumors from a mouse syngeneic model are investigated in relation to differences across the transition from hormone-dependent (HD) to hormone-independent (HI) tumor growth and the acquisition of endocrine therapy (ET) resistance (HIR tumors). Results are articulated with reported polar metabolome results to complete a metabolic picture of the above transitions and suggest markers of tumor progression and aggressiveness. Untargeted nuclear magnetic resonance metabolomics was used to analyze tumor and mammary tissue lipid extracts. Tumor progression (HD-HI-HIR) was accompanied by increased nonesterified cholesterol forms and phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens) and decreased relative contents of triglycerides and fatty acids. Predominating fatty acids became shorter and more saturated on average. These results were consistent with gradually more activated cholesterol synthesis, ß-oxidation, and phospholipid biosynthesis to sustain tumor growth, as well as an increase in cholesterol (possibly oxysterol) forms. Particular compound levels and ratios were identified as potential endocrine tumor HD-HI-HIR progression markers, supporting new hypotheses to explain acquired ET resistance.

16.
J Neurosci Res ; 101(7): 1138-1153, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36791216

RESUMO

Breast cancer (BC) patients who undergo chemotherapy are likely to develop chemotherapy-related cognitive impairment (CRCI). Recent studies of BC patients after chemotherapy have used graph theory to investigate the topological properties of the brain functional connectome. However, little is known about structural morphological networks in BC patients after early neoadjuvant chemotherapy (NAC). Brain morphological network organization in 47 female participants with BC was investigated before and after NAC. Topological properties of brain networks were ascertained based on morphological similarities in regional gray matter using a graph theory approach based on 3D T1-weighted MRI data. Nonparametric permutation testing was used to assess longitudinal-group differences in topological metrics. Compared with BC patients before NAC, BC patients after early NAC showed significantly increased global efficiency (p = .048), decreased path length (p = .033), and abnormal nodal properties and connectivity, mainly located in the central executive network (CEN). The change in the network efficiency of the right caudate was negatively correlated with the change in the Self-Rating Anxiety Scale score (r = -.435, p = .008), and the change in the nodal degree of the left superior frontal gyrus (dorsolateral part) was positively correlated with the change in the Functional Assessment of Cancer Therapy score (r = .547, p = .002). BC participants showed randomization in global properties and dysconnectivity in the CEN after early NAC. NAC may disrupt the cognitive balance of the brain morphological network in individuals with BC.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Feminino , Humanos , Encéfalo/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Terapia Neoadjuvante , Estudos Longitudinais
17.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239973

RESUMO

Irisin (Ir) is an adipomyokine formed from fibronectin type III domain-containing protein 5 (FNDC5), which can be found in various cancer tissues. Additionally, FNDC5/Ir is suspected of inhibiting the epithelial-mesenchymal transition (EMT) process. This relationship has been poorly studied for breast cancer (BC). The ultrastructural cellular localizations of FNDC5/Ir were examined in BC tissues and BC cell lines. Furthermore, we compared serum levels of Ir with FNDC5/Ir expression in BC tissues. The aim of this study was to examine the levels of EMT markers, such as E-cadherin, N-cadherin, SNAIL, SLUG, and TWIST, and to compare their expression levels with FNDC5/Ir in BC tissues. Tissue microarrays with 541 BC samples were used to perform immunohistochemical reactions. Serum levels of Ir were assessed in 77 BC patients. We investigated FNDC5/Ir expression and ultrastructural localization in MCF-7, MDA-MB-231, and MDA-MB-468 BC cell lines and in the normal breast cell line (Me16c), which was used as the control. FNDC5/Ir was present in BC cell cytoplasm and tumor fibroblasts. FNDC5/Ir expression levels in BC cell lines were higher compared to those in the normal breast cell line. Serum Ir levels did not correlate with FNDC5/Ir expression in BC tissues but were associated with lymph node metastasis (N) and histological grade (G). We found that FNDC5/Ir correlated moderately with E-cadherin and SNAIL. Higher Ir serum level is associated with lymph node metastasis and increased grade of malignancy. FNDC5/Ir expression is associated with E-cadherin expression level.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Fibronectinas , Metástase Linfática , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Caderinas/metabolismo , Transição Epitelial-Mesenquimal
18.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569547

RESUMO

Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor tyrosine kinase (RTK), is often upregulated in various cancers. This study aimed to validate PTK7 as a target for breast cancer (BC) and investigate its oncogenic signaling mechanism. BC tissue analysis showed significantly elevated PTK7 mRNA levels, especially in refractory triple-negative breast cancer (TNBC) tissues, compared with normal controls. Similarly, BC cell lines exhibited increased PTK7 expression. Knockdown of PTK7 inhibited the proliferation of T-47D and MCF-7 hormone-receptor-positive BC cell-lines and of HCC1187, MDA-MB-231, MDA-MB-436, and MDA-MB-453 TNBC cells. PTK7 knockdown also inhibited the adhesion, migration, and invasion of MDA-MB-231, MDA-MB-436, and MDA-MB-453 cells, and reduced the phosphorylation levels of crucial oncogenic regulators including extracellular signal-regulated kinase (ERK), Akt, and focal adhesion kinase (FAK). Furthermore, PTK7 interacts with fibroblast growth factor receptor 1 (FGFR1) and epidermal growth factor receptor (EGFR) expressed in MDA-MB-231 cells. Knockdown of PTK7 decreased the growth-factor-induced phosphorylation of FGFR1 and EGFR in MDA-MB-231 cells, indicating its association with RTK activation. In conclusion, PTK7 plays a significant role in oncogenic signal transduction by enhancing FGFR1 and EGFR activation, influencing BC tumorigenesis and metastasis. Hence, PTK7 represents a potential candidate for targeted BC therapy, including TNBC.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Moléculas de Adesão Celular/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
19.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375323

RESUMO

Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.


Assuntos
Genômica , Neoplasias , Humanos , Genômica/métodos , Proteômica/métodos , Epigenômica/métodos , Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metabolômica/métodos , Microambiente Tumoral
20.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005222

RESUMO

The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/ß-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.


Assuntos
Neoplasias da Mama , Espectrometria de Massas em Tandem , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/genética , Fosfatidilinositol 3-Quinases , Apoptose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA