RESUMO
Brick kiln emissions adversely affect air pollution and the health of workers and individuals living near the kilns; however, evidence of their impacts remains limited. We conducted a systematic review of brick kiln pollution (emissions, source contributions and personal exposures) and its effects on health. We extracted articles from electronic databases and through manual citation searching. We estimated pooled, sample-size-weighted means and standard deviations for personal exposures by job type; computed mean emission factors and pollutant concentrations by brick kiln design; and meta-analyzed differences in means or proportions for health outcomes between brick kiln workers and controls or for participants living near or far away from kilns. We identified 104 studies; 74 were conducted in South Asia. The most evaluated pollutants were particulate matter (PM; n = 48), sulfur dioxide (SO2; n = 24) and carbon monoxide (CO; n = 22), and the most evaluated health outcomes were respiratory health (n = 34) and musculoskeletal disorders (n = 9). PM and CO emissions were higher among traditional than improved brick kilns. Mean respirable silica exposures were only measured in 4 (4%) studies and were as high as 620 µg/m3, exceeding the NIOSH recommended exposure limit by a factor of over 12. Brick kiln workers had consistently worse lung function, more respiratory symptoms, more musculoskeletal complaints, and more inflammation when compared to unexposed participants across studies; however, most studies had a small sample size and did not fully describe methods used for sampling or data collection. On average, brick kiln workers had worse health outcomes when compared to unexposed controls but study quality supporting the evidence was low. Few studies reported silica concentrations or personal exposures, but the few that did suggest that exposures are high. Further research is needed to better understand the relationship between brick kiln pollution and health among workers, and to evaluate exposure mitigation strategies.
Assuntos
Poluição do Ar , Humanos , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Materiais de ConstruçãoRESUMO
The study investigated soil quality around brick kilns in the Jammu district of Jammu and Kashmir, analyzing 200 samples from 50 sites for selected parameters such as pH, electrical conductiv1ity, soil temperature, organic carbon content, organic matter, macronutrients, and heavy metals. The findings revealed that soil electrical conductivity ranged from 0.33 to 0.63 dS/m, with significant differences observed at varying distances from the kilns. Copper concentrations were highest at 5.32 mg/kg near the kilns, while iron and lead levels also varied significantly, indicating potential contamination. The mean soil temperature was recorded to be 27.69°C.The pH values ranged from 6.5 to 7.8, and the average pH of 8.22 indicated the slightly alkaline nature of the soil around the brick kilns. The organic carbon ranged from 0.34% to 1.02%.Soil temperature and electrical conductivity decreased with increasing distance from the kilns, with temperature showing positive correlations with organic carbon, organic matter, nitrogen, potassium, manganese, and iron and negative correlations with pH, phosphorus, zinc, copper, lead, and cadmium. A perfect positive correlation was noted among nitrogen, organic carbon, and organic matter. Heavy metals, except for zinc and manganese, showed positive correlations with each other. The average Zn, Cu, Mn, Fe, Pb and Cd concentration was recorded as 1.07, 1.03, 6.71, 10.30, 37.04 and 1.91 ppm, respectively. The contamination factor indicated moderate contamination with lead and cadmium, while the geo-accumulation index also suggested moderate contamination. The pollution load index reflected unpolluted soil and enrichment factor values for heavy metals ranked as Cd > Pb > Cu > Zn > Mn > Fe.ANOVA results revealed significant variations in electrical conductivity, copper, iron, and lead, underscoring the potential environmental impacts at different distances from the kilns. However, no significant differences were found between agricultural and non-agricultural sites in other physicochemical parameters. These variations highlight the considerable impact of brick kilns on soil health, emphasizing the need for enhanced environmental management and further research to mitigate these effects.
RESUMO
The Brickfield Industry is the major and oldest informal industry in India, where millions of brickfield workers make their livelihood. Aged brickfield workers are also involved in different activities in the brickfield, especially in brick mold activities owing to poor socioeconomic conditions. A cross-sectional study was designed to determine the prevalence of work-related musculoskeletal disorders among the aged brick molders and compare them with aged control subjects. A Nordic Questionnaire was applied to assess the discomfort felt among both groups of workers and the Rapid Upper Limb Assessment (RULA) method was used to evaluate posture during their job. The RULA posture analysis showed that the posture adopted by aged brick molders required changes immediately. The result of the ART tool also stated that the brick molding activities' exposure level was high and required further investigation urgently. The study concluded that due to working in a forward bending posture for a prolonged period, aged brickmolders suffered from severe low back and knee pain along with upper-limb disorders due to repetitive activities.
Assuntos
Indústria da Construção , Doenças Musculoesqueléticas , Doenças Profissionais , Postura , Humanos , Índia/epidemiologia , Estudos Transversais , Doenças Musculoesqueléticas/epidemiologia , Doenças Profissionais/epidemiologia , Prevalência , Masculino , Pessoa de Meia-Idade , Medição de Risco , Adulto , Inquéritos e Questionários , FemininoRESUMO
Materialization is currently the primary method for utilizing restored heavy metal-contaminated soil (RHMCS). However, compared to ordinary building materials, the migration and transformation mechanisms of heavy metals (HMs) while preparing these materials remain unclear. To bridge these gaps, this study investigated the migration and transformation mechanisms of As and Pb during the sintering of RHMCS into bricks. This study is the first to conduct a systematic study from the perspectives of both the inner and outer brick layers on the patterns and mechanisms of HM migration and transformation during the sintering process, along with the safety of product utilization. Approximately 90% of As and 36% of Pb migrated out of the RHMCS, with significant transformations observed after sintering. Adjusting the sintering parameters increased migration at long dwell times and high temperatures. These findings indicate different migration behaviors and transformations of HMs within the brick layers, emphasizing the need for cautious application and potential secondary pollution risks. A potential ecological risk index confirmed the safety of the bricks in accordance with construction material standards. Overall, this study provides crucial insights into safe and effective RHMCS utilization, contributing significantly to environmental remediation and sustainable construction practices.
RESUMO
The textile industry in Bangladesh faces environmental and health challenges due to the disposal of solid waste from Effluent Treatment Plants (ETPs). To address this issue, a study was conducted using soil from a brick industry near Dhaka, amending it with varying amounts of dry sludge to create clay bricks. The original soil had a loam texture and medium plasticity. The research found that adding 9 wt% of sludge resulted in Grade A commercial bricks with a compressive strength of 15.33 MPa and water absorption of 13.33 wt%, meeting BDS 208 standards. However, these sludge-incorporated bricks experienced more shrinkage during the burning process due to organic content, requiring additional soil to maintain conventional dimensions. Also, to assess the health hazards of these sludge-incorporated bricks, a leaching test was performed, revealing that no toxic heavy metals (Pb, Cd, Cr, Cu, Ni, and Zn) in the leachate exceeded the limits set by the United States Environmental Protection Agency (USEPA). The study indicates that textile ETP sludge can serve as a sustainable raw material for bricks, potentially reducing the environmental burden caused by textile sludge disposal by 28.75%. This innovative approach offers a promising solution to both environmental and health concerns associated with textile waste in Bangladesh's industrial sector.
Assuntos
Metais Pesados , Esgotos , Argila , Materiais de Construção , Bangladesh , Solo , Têxteis , Medição de Risco , Metais Pesados/análiseRESUMO
Brick kiln co-treatment is a novel industrial hazardous wastes (IHWs) utilization process. However, the effects of chlorine (Cl) in wastes on heavy metals (HMs) during this process are overlooked. This study investigated the stabilization/solidification (S/S) and volatilization, as well as long and short-term leaching, of HMs in Cl-containing bricks. The results indicated enhanced formations of stable mineral phases (NiFe2O4, Ni2SiO4, Cd3Al2Si3O12, CdSiO3, FeCr2O4, Cr2O3, CuFe2O4, and CuAl2O4) in bricks at a low sintering temperature (800 °C) due to the affinity between Cl and HMs. By comparing HM concentrations before and after sintering in bricks, the study observed that Cl's presence significantly elevated the volatilization rates for Cd and Cu by 30.8% and 14.2%, respectively. In contrast, the effect on volatilization for Ni and Cr was not significant. Additionally, utilizing the NEN 7375 method, the cumulative leaching rates of Ni, Cd, Cr, and Cu over a 64-day experiment under extremely acidic conditions were 0.22%, 7.18%, 0.01%, and 1.46%, respectively. Similarly, higher short-term leaching rates of Cd (4.03%) and Cu (5.73%) than those of Ni (0.94%) and Cr (0.08%) were observed. This finding might be attributed to the lower stability of the Cd and Cu solid phases under acidic environments compared to those of Ni and Cr. Surface wash-off, dissolution, and diffusion were the processes governing HM leaching from bricks. The 10-year projections revealed a minimal release of HMs during future extended leaching, implying the successful S/S of HMs. This study provides a reference for assessing the environmental impacts of brick kiln co-processing of Cl-containing IHWs.
Assuntos
Cloro , Metais Pesados , Cádmio , Resíduos Perigosos/análise , Metais Pesados/análiseRESUMO
The prevalence of osteoarthritis (OA) in Tibetans is higher than that in Han, while Tibetans have a habit of drinking brick tea with high fluoride. A cross-sectional study was conducted to explore the association between fluoride exposure in drinking brick tea and OA. All subjects were divided into four groups by the quartiles (Q) of tea fluoride (TF) and urine fluoride (UF). ROC was plotted and OR were obtained using logistic regression model. The prevalence of OA in the Q3 and Q4 group of TF were 2.2 and 2.7 times higher than in the Q1 group, and the prevalence of OA in the Q2, Q3 and Q4 group of UF were 3.2, 3.5, and 4.1 times higher than in the Q1 group. ROC analysis showed the cutoff values were 4.523 mg/day (TF) and 1.666 mg/L (UF). In conclusion, excessive fluoride in drinking brick tea could be a risk factor for developing OA.
Assuntos
Fluoretos , Osteoartrite , Chá , Fluoretos/análise , Fluoretos/urina , Fluoretos/toxicidade , Humanos , Masculino , Osteoartrite/epidemiologia , Osteoartrite/induzido quimicamente , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Prevalência , Tibet/epidemiologia , Adulto , Idoso , Fatores de RiscoRESUMO
Airborne respirable crystalline silica (RCS) has been a widely recognized hazard in the United States for nearly 100 years, yet it continues to pose a risk to construction tradespersons, among others. RCS exposures vary widely depending on site conditions and tools and materials used. The proper use of engineering, administrative, and personal protective equipment (PPE) controls can effectively reduce exposure to RCS. Historically, others have reviewed available RCS exposure data among construction trades and reported that there were considerable data gaps and variability that needed to be addressed. This current assessment aimed to synthesize available peer-reviewed exposure studies to determine potential RCS exposures during the use of common construction materials and evaluate to what extent data gaps and variability persist. Twenty-eight studies were identified that reported RCS exposure during construction tasks. After conversion to the unit of µg/m3, reported measurements from samples collected for varying durations ranged from 6.0 to 75,500 µg/m3 for work with concrete, 80 to 4,240 µg/m3 for work with brick, <59 to 10,900 µg/m3 for work with mortar, 90 to 44,370 µg/m3 for work with engineered stone, and 70 to 380 µg/m3 for work with roof tile. To better facilitate pooling data across studies, future researchers should report their sample duration, clarify how time-weighted average (TWA) exposure data are calculated, report the silica content of the material being manipulated, and specify whether samples were collected while the task was performed in isolation or on a worksite where other silica-containing materials were also actively handled. When reporting results as respirable quartz, it is important to note whether any other polymorphic forms of silica were detected. It is ultimately the employer's responsibility to train employees and monitor and control RCS exposures on construction worksites. To do this effectively, it is important to have a clear understanding of the tasks, materials, and site conditions where intervention is most urgently needed.
Assuntos
Poluentes Ocupacionais do Ar , Indústria da Construção , Materiais de Construção , Exposição por Inalação , Exposição Ocupacional , Dióxido de Silício , Dióxido de Silício/análise , Exposição Ocupacional/análise , Exposição por Inalação/análise , Exposição por Inalação/prevenção & controle , Poluentes Ocupacionais do Ar/análise , Humanos , Estados Unidos , Equipamento de Proteção Individual , Monitoramento Ambiental/métodosRESUMO
Exposure to respirable dust and crystalline silica (SiO2) has been linked to chronic obstructive pulmonary disease, silicosis, cancer, heart disease, and other respiratory diseases. Relatively few studies have measured respirable dust and SiO2 concentrations among workers at brick kilns in low- and middle-income countries. The purpose of this study was to measure personal breathing zone (PBZ) respirable dust and SiO2 concentrations among workers at one brick kiln in Bhaktapur, Nepal. A cross-sectional study was conducted among 49 workers in five job categories: administration, fire master, green (unfired) brick hand molder, green brick machine molder, and top loader. PBZ air samples were collected from each worker following Methods 0600 (respirable dust) and 7500 (respirable crystalline SiO2: cristobalite, quartz, tridymite) of the U.S. National Institute for Occupational Safety and Health. Eight-hour time-weighted average (TWA) respirable dust and quartz concentrations were also calculated. SiO2 percentage was measured in one bulk sample each of wet clay, the release agent used by green brick hand molders, and top coat soil at the brick kiln. The geometric mean (GM) sample and TWA respirable dust concentrations were 0.20 (95% confidence interval [CI]: 0.16, 0.27) and 0.12 (95% CI: 0.09, 0.16) mg/m3, respectively. GM sample and TWA quartz concentrations were 15.28 (95% CI: 11.11, 21.02) and 8.60 (95% CI: 5.99, 12.34) µg/m3, respectively. Job category was significantly associated with GM sample and TWA respirable dust and quartz concentrations (all p < 0.0001). Top loaders had the highest GM sample and TWA respirable dust concentrations of 1.49 and 0.99 mg/m3, respectively. Top loaders also had the highest GM sample and TWA quartz concentrations of 173.08 and 114.39 µg/m3, respectively. Quartz percentages in bulk samples were 16%-27%. Interventions including using wet methods to reduce dust generation, administrative controls, personal protective equipment, and education and training should be implemented to reduce brick kiln worker exposures to respirable dust and SiO2.
Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Dióxido de Silício/análise , Exposição Ocupacional/análise , Quartzo/análise , Poeira/análise , Poluentes Ocupacionais do Ar/análise , Nepal , Estudos Transversais , Exposição por Inalação/análiseRESUMO
One-step purification of ethylene (C2 H4 ) from a quaternary gas mixture of C2 H6 /C2 H4 /C2 H2 /CO2 by adsorption is a promising separation process, yet developing adsorbents that synergistically capture various gas impurities remains challenging. Herein, a Lego-brick strategy is proposed to customize pore chemistry in a unified framework material. The ethane-selective MOF platform is further modified with customized binding sites to specifically adsorb acetylene and carbon dioxide, thus one-step purification of C2 H4 with high productivity of polymer-grade product (134 mol kg-1 ) is achieved on the assembly of porous coordination polymer-2,5-furandicarboxylic acid (PCP-FDCA) and PCP-5-aminoisophthalic acid (IPA-NH2 ). Computational studies verify that the low-polarity surface of this MOFs-based platform provides a delicate environment for C2 H6 recognition, and the specific binding sites (FDCA and IPA-NH2 ) exhibit favorable trapping of C2 H2 and CO2 via CHδ+ ···Oδ- and Cδ+ ···Nδ- electrostatic interactions, respectively. The proposed Lego-brick strategy to customize binding sites within the MOFs structure provides new ideas for the design of adsorbents for compounded separation tasks.
RESUMO
As an emerging class of porous crystalline material, covalent organic frameworks (COFs) have received considerable research interests in terms of exploring new architectures and functions. Herein, we developed an unprecedented "H-shaped" monomer, upon self-polycondensation, which facilely produced a benzoimidazole-based COF (H-BIm-COF) with a rarely reported brick-wall topology. H-BIm-COF displayed high crystallinity, nano-sized porosity, and high thermal and chemical stabilities. Interestingly, H-BIm-COF based membranes showed selective permeability towards different solvents, which related to the size and polarity of the guest molecule. Additionally, initial study suggested the COF displayed excellent rejection efficiency towards ionic dyes, for example chromium black T (99.7 %) and rhodamine B (97.3 %). This work provides insights into developing new topological COFs by designing monomers with new configurations.
RESUMO
Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.
Assuntos
Camellia sinensis , Chá , Chá/química , Camellia sinensis/química , Fungos , Antioxidantes , China , FermentaçãoRESUMO
Hybrid nanofluids have become a popular choice for various engineering and industrial applications due to their advanced properties. This study focuses on investigating the consequences of a low oscillating magnetic field on the flow of unsteady mono and hybrid nanofluids over a vertically moving permeable disk. Initially, iron oxide nanoparticles are mixed with water to create a mono nanofluid, which is later transformed into a hybrid nanofluid by adding cobalt nanoparticles. The shape of nanoparticles used is brick-shaped, and an external magnetic field is applied to regulate the flow and heat transfer mechanism using ferromagnetic nanoparticles. Additionally, the nonlinear thermal radiative heat flux is considered for the heat transfer phenomenon. The momentum and rotational motion of the magnetic fluid caused by the rotating disk are formulated using the Shliomis fundamental concept. The numerical analysis of the ordinary differential equations (ODEs) is carried out using the bvp4c technique, and the results are presented in tabular form for the surface drag coefficient and heat transmission at the walls. Moreover, the temperature and velocity distributions are illustrated using graphical representations against relevant parameters. The findings highlight that for a constant negative value for the magnetization parameterÏ<0,the heat transfer rate for hybrid nanofluid is witnessed stronger at a volume fractionÏhnf=0.120,whereas a minimal heat transfer rate is observed for positive values of magnetization parameterÏ>0at the same value of volume fraction.
RESUMO
The majority of industrial products are identified as persistent organic pollutants after their date of expiry, which is highly harmful to the ecosystem and human health and also going to be banned around the world. Paint latex is one of those pollutants which become a hazardous waste material after stocking for a long time. Approximately 20% of color paints do not get used for their desired purpose after getting sold out and end up in a landfill. Now a day's construction industry is inclining towards the various types of geo-polymer concrete since it does not require cement. But that geo-polymer concrete has too much less workability as compared to the same grade of control cement concrete. To achieve the desired workability as well as other properties of geo-polymer concrete by using waste paint latex as performance improving admixture is the main motive of the present research. Fourteen different mixes of control and calcined clay-based geo-polymer concrete have been prepared by adding up to 3% waste paint latex of weight of cementitious materials and a detailed study has been done on various properties such as workability, rheology, shrinkage, strength and its microstructure. The presence of nanoparticles of TiO2 in waste paint latex has helped to produce extra hydration products, by which the mechanical properties, durability and microstructure of both traditional and geo-polymer concrete have increased. It has been concluded that a higher dose of waste paint latex improves the workability but the strength and durability properties of traditional and geo-polymer concrete improve up to 2-2.5% of waste paint latex replaced to water.
Assuntos
Poluentes Ambientais , Nanopartículas , Humanos , Materiais de Construção , Látex , EcossistemaRESUMO
Fuzhuan brick tea, a distinctive dark tea fermented by microorganisms, is a traditional beverage in China throughout history. Recently, it has attracted considerable attention owing to its unique quality characteristics and potential health benefits. The aim of this study was to establish a method for the quality control of Fuzhuan brick tea for stable production. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was used to identify Fuzhuan brick tea, and the major components were chosen for further quantitative analysis. Subsequently, a quantification method was developed using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry, and its reliability was verified through methodological validation. Finally, a total of 30 compounds were identified, including catechins, flavonoids, alkaloids, and fatty acids. The established method was reliable for methodological validation and was applied to the quantitative analysis of Fuzhuan brick tea. This study provides a fundamental basis for the quality control and further studies on the component analysis of Fuzhuan brick tea.
Assuntos
Flavonoides , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Flavonoides/análise , Chá/químicaRESUMO
Thermal pollution from stormwater runoff has been the focus of many studies in recent years due to its potential harm to aquatic microorganisms. However, there were few studies on the thermal pollution caused by stormwater runoff from various types of urban pavement surfaces. A lab-scale experiment was conducted to compare the thermal load of stormwater runoff from impermeable and permeable pavements and the influencing factors were investigated. The experimental findings demonstrated that the rainfall return period and initial temperature of various pavement surfaces significantly impacted the thermal load. The stormwater runoff absorbed more heat as the initial temperature, and rainfall return period increased. The difference of the thermal load of stormwater runoff between permeable brick pavement (PBP) and the impermeable asphalt pavement (IAP) increased from 305.26 to 436.70 kJ/m2, when the initial surface temperature rose from 35 to 47 °C. The average runoff temperature decreased by 1.39-1.90 °C for PBP compared to the IAP, with an increase in surface temperature from 35 to 47 °C. Under the various initial surface temperatures, the mean temperature of the infiltration effluent from the PBP was 3.12-4.20 °C lower than the average temperature of stormwater runoff from the surface layer. Therefore, a PBP can effectively alleviate thermal pollution from stormwater runoff and safeguard the receiving waters' quality.
Assuntos
Chuva , Movimentos da Água , Qualidade da Água , Hidrocarbonetos/análise , Monitoramento AmbientalRESUMO
BACKGROUND: Sheep whey protein (SWP), Fu brick tea polysaccharides (FBTP) and stachyose (STA) have been shown to improve immunity, but little is known about the regulatory effect of SWP, FBTP, STA and their combined formula (CF) on immune function and intestinal metabolism of immunosuppressed mice induced by cyclophosphamide (CTX). RESULTS: Administration of SWP, FBTP, STA or CF restored the levels of body weight, immune organ index, immune organ morphology, cytokines and immunoglobulins in CTX immunosuppressed mice. Interestingly, CF improved all the mentioned parameters more effective than administration of SWP, FBTP or STA alone. In addition, CF was more effective to increase the levels of intestinal immune-related gene expression than FBTP, SWP or STA alone in immunosuppressed mice, suggesting that CF exhibited excellent intestinal immune regulation function. CF also significantly improved cecal concentrations of short-chain fatty acids of CTX-treated mice. Furthermore, metabolomics analysis demonstrated that CF recovered the levels of 28 metabolites associated with the CTX treatment to the levels of normal mice. CONCLUSION: Conclusively, these findings suggested that CF as a functional food combination of SWP, FBTP and STA could promote the immune function against human diseases, which providing theoretical support for the co-ingestion of SWP and functional sugars as a feasible strategy for improving the body immunity in the future. © 2023 Society of Chemical Industry.
Assuntos
Polissacarídeos , Chá , Animais , Humanos , Camundongos , Ciclofosfamida , Imunidade , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Ovinos , Chá/metabolismo , Proteínas do Soro do LeiteRESUMO
This study highlights the development of a lab-scale, indigenously designed; Packed-Bed Biofilm Reactor (PBBR) packed with brick pieces. The developed biofilm in the reactor was used for the decolourisation and biodegradation of the textile industry effluent. The PBBR was continuously operated for 264 days, during which 301 cycles of batch and continuous treatment were operated. In batch mode under optimised conditions, more than 99% dye decolourisation and ≥ 92% COD reduction were achieved in 6 h of contact time upon supplementation of effluent with 0.25 g L-1 glucose, 0.25 g L-1 urea, and 0.1 g L-1 phosphates. A decolourisation rate of 133.94 ADMI units h-1 was achieved in the process. PBBR, when operated in continuous mode, showed ≥ 95% and ≥ 92% reduction in ADMI and COD values. Subsequent aeration and passage through the charcoal reactor assisted in achieving a ≥ 96% reduction in COD and ADMI values. An overall increase of 81% in dye-laden effluent decolourisation rate, from 62 to 262 mg L-1 h-1, was observed upon increasing the flow rate from 18 to 210 mL h-1. Dye biodegradation was determined by UV-Vis and FTIR spectroscopy and toxicity study. SEM analysis showed the morphology of the attached-growth biofilm.
Assuntos
Corantes , Indústria Têxtil , Corantes/metabolismo , Compostos Azo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Resíduos IndustriaisRESUMO
Following the development of digital measurement technology in recent years, the information contained in the measurement outcomes have become increasingly rich. However, the traditional graphical representation method based on vector graph needs to be updated. In this study, we use the Beamless Hall of Linggu Temple as an example. Measurements are conducted by using digital techniques, including three-dimensional (3D) laser scanning, close-range photogrammetry, and infrared thermal imaging. The pseudocolours that express spatial information and moisture distribution are calculated and generated through point clouds, which are used to express the land subsidence, wall deformation, moisture distribution, and other effects of the Beamless Hall. Furthermore, combining it with two-dimensional (2D) graphical representation, such as the plan, elevation, and section, damage-related information can be expressed intuitively and efficiently. This method can combine the advantages of graphics and images to provide a comprehensive and intuitive representation of the digital measurement results of brick architecture heritage. It can also provide a reference for surveying similar monuments and buildings of our architectural heritage.
RESUMO
The dramatic increase in obesity is putting people under increasing pressure. Lipase inhibitors, as a kind of effective anti-obesity drug, have attracted more and more researchers' attention in recent years because of their advantages of acting on the intestinal tract and having no side effects on the central nervous system. In this study, lipase inhibitor Fu Brick Theophylline (FBT) was screened based on enzyme molecular dynamics, and the inhibition mechanism of lipase inhibitors on obesity was analyzed and discussed at the cellular level and animal model level. We found that FBT had high inhibition effects of lipase with an IC50 of 1.02~0.03 µg/mL. Firstly, the laboratory used 3T3-L1 proadipocytes as models, flow cytometry was used to detect the effects of FBT on the cycle, apoptosis and intracellular ROS activity of proadipocytes. To study the contents of triglyceride, total cholesterol, related metabolites and related gene and protein expression in adipocytes. The results showed that FBT could reduce ROS production and inflammatory factor mRNA expression during cell differentiation. Secondly, by establishing the animal model of high-fat feed ob nutritional obese mice, the morphological observation and gene expression analysis of body weight, fat rate, adipocyte and hepatocyte metabolism of FBT obese mice were further discussed. It was proven that FBT can effectively reduce the degree of fatty liver, prevent liver fibrosis and fat accumulation, and improve the damage of mitochondrial membrane structure. This study provides a theoretical basis for the screening and clinical treatment of lipase inhibitors.