Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.210
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 785-808, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32126183

RESUMO

Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector-related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.


Assuntos
Suscetibilidade a Doenças , Hipersensibilidade Imediata/etiologia , Hipersensibilidade Imediata/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Citocinas/metabolismo , Gerenciamento Clínico , Meio Ambiente , Predisposição Genética para Doença , Humanos , Hipersensibilidade Imediata/diagnóstico , Mastócitos/imunologia , Mastócitos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Annu Rev Immunol ; 36: 461-488, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677474

RESUMO

Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.


Assuntos
Metabolismo Energético , Imunidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Humanos , Memória Imunológica , Imunoterapia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Mitocôndrias/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/citologia
3.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35051368

RESUMO

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Magnésio/metabolismo , Animais , Infecções Bacterianas/imunologia , Restrição Calórica , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células HEK293 , Humanos , Memória Imunológica , Sinapses Imunológicas/metabolismo , Imunoterapia , Ativação Linfocitária/imunologia , Sistema de Sinalização das MAP Quinases , Magnésio/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo
4.
Immunity ; 54(2): 211-224, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567261

RESUMO

Astrocytes play both physiological and pathological roles in maintaining central nervous system (CNS) function. Here, we review the varied functions of astrocytes and how these might change in subsets of reactive astrocytes. We review the current understanding of astrocyte interactions with microglia and the vasculature and protective barriers in the central nervous system as well as highlight recent insights into physiologic and reactive astrocyte sub-states identified by transcriptional profiling. Our goal is to stimulate inquiry into how these molecular identifiers link to specific functional changes in astrocytes and to define the implications of these heterogeneous molecular and functional changes in brain function and pathology. Defining these complex interactions has the potential to yield new therapies in CNS injury, infection, and disease.


Assuntos
Astrócitos/imunologia , Encéfalo/patologia , Doenças do Sistema Nervoso Central/imunologia , Infecções/imunologia , Inflamação/imunologia , Animais , Comunicação Celular , Humanos , Imunidade Celular , Neuroimunomodulação
5.
Immunity ; 54(8): 1698-1714.e5, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34233154

RESUMO

Antigen-specific CD8+ T cells in chronic viral infections and tumors functionally deteriorate, a process known as exhaustion. Exhausted T cells are sustained by precursors of exhausted (Tpex) cells that self-renew while continuously generating exhausted effector (Tex) cells. However, it remains unknown how Tpex cells maintain their functionality. Here, we demonstrate that Tpex cells sustained mitochondrial fitness, including high spare respiratory capacity, while Tex cells deteriorated metabolically over time. Tpex cells showed early suppression of mTOR kinase signaling but retained the ability to activate this pathway in response to antigen receptor signals. Early transient mTOR inhibition improved long-term T cell responses and checkpoint inhibition. Transforming growth factor-ß repressed mTOR signaling in exhausted T cells and was a critical determinant of Tpex cell metabolism and function. Overall, we demonstrate that the preservation of cellular metabolism allows Tpex cells to retain long-term functionality to sustain T cell responses during chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Transdução de Sinais/imunologia
6.
Semin Immunol ; 66: 101712, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753974

RESUMO

Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.


Assuntos
Imunidade Inata , Neoplasias , Animais , Humanos , Inflamação , Células Matadoras Naturais , Neoplasias/metabolismo , Receptores de Interleucina-1/metabolismo
7.
Trends Immunol ; 43(5): 391-403, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35414484

RESUMO

Cancer germline antigens (CGAs) are expressed in immune-privileged germline tissues, while epigenetically silenced in somatic tissues. CGAs become re-expressed in tumors and can promote oncogenesis. Tumors prominently exploit mechanisms similar to those in germline tissues to shield from immunosurveillance. We hypothesize that CGAs contribute towards tumor escape from immune effector CD8+ T cells. For illustrative purposes, we assessed the co-presence or -absence of CGAs with these cells in multiple tumor types. Considering a broad array of CD8+ T cell evasive mechanisms, we exemplify the co-occurrence of gene transcripts of eight CGAs with those of adhesion molecules, endothelial cells, and/or the Wnt pathway. We present a novel concept of CGAs and their association with CD8+ T cell evasion, which may be relevant for future immunotherapeutic interventions.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Células Endoteliais , Células Germinativas , Humanos , Linfócitos do Interstício Tumoral , Nucleotidiltransferases/metabolismo
8.
Trends Biochem Sci ; 45(6): 472-483, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413324

RESUMO

Experimental information from microscopy, structural biology, and bioinformatics may be integrated to build structural models of entire cells with molecular detail. This integrative modeling is challenging in several ways: the intrinsic complexity of biology results in models with many closely packed and heterogeneous components; the wealth of available experimental data is scattered among multiple resources and must be gathered, reconciled, and curated; and computational infrastructure is only now gaining the capability of modeling and visualizing systems of this complexity. We present recent efforts to address these challenges, both with artistic approaches to depicting the cellular mesoscale, and development and application of methods to build quantitative models.


Assuntos
Biologia Celular , Biologia Computacional , Descoberta de Drogas , Estrutura Molecular
9.
Am J Physiol Cell Physiol ; 326(2): C622-C631, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189136

RESUMO

The recently discovered ion channel TMEM63A has biophysical features distinctive for mechano-gated cation channels, activating at high pressures with slow kinetics while not inactivating. However, some biophysical properties are less clear, including no information on its function in whole cells. The aim of this study is to expand the TMEM63A biophysical characterization and examine the function in whole cells. Piezo1-knockout HEK293T cells were cotransfected with human TMEM63A and green fluorescent protein (GFP), and macroscopic currents in cell-attached patches were recorded by high-speed pressure clamp at holding voltages from -120 to -20 mV with 0-100 mmHg patch suction for 1 s. HEK293 cells cotransfected with TMEM63A and GCaMP5 were seeded onto polydimethylsiloxane (PDMS) membrane, and the response to 3-12 s of 1%-15% whole cell isotropic (equi-biaxial) stretch induced by an IsoStretcher was measured by the change in intracellular calcium ([Ca2+]i) and presented as (ΔF/F0 > 1). Increasing patch pressures activated TMEM63A currents with accelerating activation kinetics and current amplitudes that were pressure dependent but voltage independent. TMEM63A currents were plateaued within 2 s, recovered quickly, and were sensitive to Gd3+. In whole cells stretched on flexible membranes, radial stretch increased the [Ca2+]i responses in a larger proportion of cells cotransfected with TMEM63A and GCaMP5 than GCaMP5-only controls. TMEM63A currents are force activated and voltage insensitive, have a high threshold for pressure activation with slow activation and deactivation, and lack inactivation over 5 s. TMEM63A has the net polarity and kinetics that would depolarize plasma membranes and increase inward currents, contributing to a sustained [Ca2+]i increase in response to high stretch.NEW & NOTEWORTHY TMEM63A has biophysical features distinctive for mechano-gated cation channels, but some properties are less clear, including no functional information in whole cells. We report that pressure-dependent yet voltage-independent TMEM63A currents in cell membrane patches correlated with cell size. In addition, radial stretch of whole cells on flexible membranes increased the [Ca2+]i responses more in TMEM63A-transfected cells. Inward TMEM63A currents in response to high stretch can depolarize plasma membranes and contribute to a sustained [Ca2+]i increase.


Assuntos
Canais Iônicos , Humanos , Cátions/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Canais Iônicos/metabolismo , Cinética , Potenciais da Membrana/fisiologia
10.
Diabetologia ; 67(9): 1998-2011, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38898303

RESUMO

AIMS/HYPOTHESIS: Individuals with diabetes are at high risk of cardiovascular complications, which significantly increase morbidity/mortality. Coronary microvascular disease (CMD) is recognised as a critical contributor to the increased cardiac mortality observed in people with diabetes. Therefore, there is an urgent need for treatments that are specific to CMD. eNAMPT (extracellular nicotinamide phosphoribosyltransferase) is a damage-associated molecular pattern and TLR4 ligand, whose plasma levels are elevated in people with diabetes. This study was thus designed to investigate the pathogenic role of intracellular nicotinamide phosphoribosyltransferase (iNAMPT) and eNAMPT in promoting the development of CMD in a preclinical murine model of type 2 diabetes. METHODS: An inducible type 2 diabetic mouse model was generated by a single injection of low-dose streptozocin (75 mg/kg, i.p.) combined with a high-fat diet for 16 weeks. The in vivo effects of i/eNAMPT inhibition on cardiac endothelial cell (CEC) function were evaluated by using Nampt+/- heterozygous mice, chronic administration of eNAMPT-neutralising monoclonal antibody (mAb) or use of an NAMPT enzymatic inhibitor (FK866). RESULTS: As expected, diabetic wild-type mice exhibited significantly lower coronary flow velocity reserve (CFVR), a determinant of coronary microvascular function, compared with control wild-type mice. eNAMPT plasma levels or expression in CECs were significantly greater in diabetic mice than in control mice. Furthermore, in comparison with diabetic wild-type mice, diabetic Nampt+/- heterozygous mice showed markedly improved CFVR, accompanied by increased left ventricular capillary density and augmented endothelium-dependent relaxation (EDR) in the coronary artery. NAMPT inhibition by FK866 or an eNAMPT-neutralising mAb significantly increased CFVR in diabetic mice. Furthermore, administration of the eNAMPT mAb upregulated expression of angiogenesis- and EDR-related genes in CECs from diabetic mice. Treatment with either eNAMPT or NAD+ significantly decreased CEC migration and reduced EDR in coronary arteries, partly linked to increased production of mitochondrial reactive oxygen species. CONCLUSIONS/INTERPRETATION: These data indicate that increased i/eNAMPT expression contributes to the development of diabetic coronary microvascular dysfunction, and provide compelling support for eNAMPT inhibition as a novel and effective therapeutic strategy for CMD in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Nicotinamida Fosforribosiltransferase , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Camundongos , Nicotinamida Fosforribosiltransferase/metabolismo , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/efeitos dos fármacos
11.
Diabetologia ; 67(8): 1663-1682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814444

RESUMO

AIMS/HYPOTHESIS: Prediabetic pancreatic beta cells can adapt their function to maintain normoglycaemia for a limited period of time, after which diabetes mellitus will manifest upon beta cell exhaustion. Understanding sex-specific beta cell compensatory mechanisms and their failure in prediabetes (impaired glucose tolerance) is crucial for early disease diagnosis and individualised treatment. Our aims were as follows: (1) to determine the key time points of the progression from beta cells' functional adaptations to their failure in vivo; and (2) to mechanistically explain in vivo sex-specific beta cell compensatory mechanisms and their failure in prediabetes. METHODS: Islets from male and female transgenic Ins1CreERT2-GCaMP3 mice were transplanted into the anterior chamber of the eye of 10- to 12-week-old sex-matched C57BL/6J mice. Recipient mice were fed either a control diet (CD) or western diet (WD) for a maximum of 4 months. Metabolic variables were evaluated monthly. Beta cell cytoplasmic free calcium concentration ([Ca2+]i) dynamics were monitored in vivo longitudinally by image fluorescence of the GCaMP3 reporter islets. Global islet beta cell [Ca2+]i dynamics in line with single beta cell [Ca2+]i analysis were used for beta cell coordination studies. The glucagon receptor antagonist L-168,049 (4 mmol/l) was applied topically to the transplanted eyes to evaluate in vivo the effect of glucagon on beta cell [Ca2+]idynamics. Human islets from non-diabetic women and men were cultured for 24 h in either a control medium or high-fat/high-glucose medium in the presence or absence of the glucagon receptor antagonist L-168,049. [Ca2+]i dynamics of human islets were evaluated in vitro after 1 h exposure to Fura-10. RESULTS: Mice fed a WD for 1 month displayed increased beta cell [Ca2+]i dynamics linked to enhanced insulin secretion as a functional compensatory mechanism in prediabetes. Recruitment of inactive beta cells in WD-fed mice explained the improved beta cell function adaptation observed in vivo; this occurred in a sex-specific manner. Mechanistically, this was attributable to an intra-islet structural rearrangement involving alpha cells. These sex-dependent cytoarchitecture reorganisations, observed in both mice and humans, induced enhanced paracrine input from adjacent alpha cells, adjusting the glucose setpoint and amplifying the insulin secretion pathway. When WD feeding was prolonged, female mice maintained the adaptive mechanism due to their intrinsically high proportion of alpha cells. In males, [Ca2+]i dynamics progressively declined subsequent to glucose stimulation while insulin secretion continue to increase, suggesting uncoordinated beta cell function as an early sign of diabetes. CONCLUSIONS/INTERPRETATION: We identified increased coordination of [Ca2+]i dynamics as a beta cell functional adaptation mechanisms in prediabetes. Importantly, we uncovered the mechanisms by which sex-dependent beta cell [Ca2+]i dynamics coordination is orchestrated by an intra-islet structure reorganisation increasing the paracrine input from alpha cells on beta cell function. Moreover, we identified reduced [Ca2+]i dynamics coordination in response to glucose as an early sign of diabetes preceding beta cell secretory dysfunction, with males being more vulnerable. Alterations in coordination capacity of [Ca2+]i dynamics may thus serve as an early marker for beta cell failure in prediabetes.


Assuntos
Cálcio , Células Secretoras de Glucagon , Células Secretoras de Insulina , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estado Pré-Diabético , Animais , Feminino , Masculino , Células Secretoras de Insulina/metabolismo , Camundongos , Estado Pré-Diabético/metabolismo , Cálcio/metabolismo , Células Secretoras de Glucagon/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas
12.
Diabetologia ; 67(9): 1865-1876, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922416

RESUMO

AIMS/HYPOTHESIS: Use of genetic risk scores (GRS) may help to distinguish between type 1 diabetes and type 2 diabetes, but less is known about whether GRS are associated with disease severity or progression after diagnosis. Therefore, we tested whether GRS are associated with residual beta cell function and glycaemic control in individuals with type 1 diabetes. METHODS: Immunochip arrays and TOPMed were used to genotype a cross-sectional cohort (n=479, age 41.7 ± 14.9 years, duration of diabetes 16.0 years [IQR 6.0-29.0], HbA1c 55.6 ± 12.2 mmol/mol). Several GRS, which were originally developed to assess genetic risk of type 1 diabetes (GRS-1, GRS-2) and type 2 diabetes (GRS-T2D), were calculated. GRS-C1 and GRS-C2 were based on SNPs that have previously been shown to be associated with residual beta cell function. Regression models were used to investigate the association between GRS and residual beta cell function, assessed using the urinary C-peptide/creatinine ratio, and the association between GRS and continuous glucose monitor metrics. RESULTS: Higher GRS-1 and higher GRS-2 both showed a significant association with undetectable UCPCR (OR 0.78; 95% CI 0.69, 0.89 and OR 0.84: 95% CI 0.75, 0.93, respectively), which were attenuated after correction for sex and age of onset (GRS-2) and disease duration (GRS-1). Higher GRS-C2 was associated with detectable urinary C-peptide/creatinine ratio (≥0.01 nmol/mmol) after correction for sex and age of onset (OR 6.95; 95% CI 1.19, 40.75). A higher GRS-T2D was associated with less time below range (TBR) (OR for TBR<4% 1.41; 95% CI 1.01 to 1.96) and lower glucose coefficient of variance (ß -1.53; 95% CI -2.76, -0.29). CONCLUSIONS/INTERPRETATION: Diabetes-related GRS are associated with residual beta cell function in individuals with type 1 diabetes. These findings suggest some genetic contribution to preservation of beta cell function.


Assuntos
Diabetes Mellitus Tipo 1 , Predisposição Genética para Doença , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/metabolismo , Masculino , Feminino , Adulto , Estudos Transversais , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Diabetes Mellitus Tipo 2/genética , Glicemia/metabolismo , Genótipo , Fatores de Risco , Estratificação de Risco Genético
13.
Diabetologia ; 67(6): 995-1008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517484

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.


Assuntos
Autoanticorpos , Peptídeo C , Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Adolescente , Criança , Masculino , Feminino , Peptídeo C/sangue , Adulto , Adulto Jovem , Pré-Escolar , Autoanticorpos/sangue , Hemoglobinas Glicadas/metabolismo , Glicemia/metabolismo , Estudos de Coortes , Lactente , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo
14.
Am J Physiol Endocrinol Metab ; 326(4): E454-E471, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054972

RESUMO

Efficient and accurate methods to estimate insulin sensitivity (SI) and ß-cell function (BCF) are of great importance for studying the pathogenesis and treatment effectiveness of type 2 diabetes (T2D). Existing methods range in sensitivity, input data, and technical requirements. Oral glucose tolerance tests (OGTTs) are preferred because they are simpler and more physiological than intravenous methods. However, current analytical methods for OGTT-derived SI and BCF also range in complexity; the oral minimal models require mathematical expertise for deconvolution and fitting differential equations, and simple algebraic surrogate indices (e.g., Matsuda index, insulinogenic index) may produce unphysiological values. We developed a new insulin secretion and sensitivity (ISS) model for clinical research that provides precise and accurate estimates of SI and BCF from a standard OGTT, focusing on effectiveness, ease of implementation, and pragmatism. This model was developed by fitting a pair of differential equations to glucose and insulin without need of deconvolution or C-peptide data. This model is derived from a published model for longitudinal simulation of T2D progression that represents glucose-insulin homeostasis, including postchallenge suppression of hepatic glucose production and first- and second-phase insulin secretion. The ISS model was evaluated in three diverse cohorts across the lifespan. The new model had a strong correlation with gold-standard estimates from intravenous glucose tolerance tests and insulin clamps. The ISS model has broad applicability among diverse populations because it balances performance, fidelity, and complexity to provide a reliable phenotype of T2D risk.NEW & NOTEWORTHY The pathogenesis of type 2 diabetes (T2D) is determined by a balance between insulin sensitivity (SI) and ß-cell function (BCF), which can be determined by gold standard direct measurements or estimated by fitting differential equation models to oral glucose tolerance tests (OGTTs). We propose and validate a new differential equation model that is simpler to use than current models and requires less data while maintaining good correlation and agreement with gold standards. Matlab and Python code is freely available.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Secreção de Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Glicemia , Insulina/metabolismo , Glucose , Técnica Clamp de Glucose
15.
Am J Physiol Endocrinol Metab ; 326(5): E673-E680, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446636

RESUMO

Residual beta cells are present in most patients with longstanding type 1 diabetes but it is unknown whether these beta cells react normally to different stimuli. Moreover a defect in proinsulin conversion and abnormal alpha cell response are also part of the islet dysfunction. A three-phase [euglycemia, hyperglycemia, and hyperglycemia + glucagon-like peptide 1 (GLP-1)] clamp was performed in patients with longstanding type 1 diabetes. Intravenous arginine boluses were administered at the end of each phase. On another day, a mixed meal stimulation test with a subsequent intravenous arginine bolus was performed. C-peptide was detectable in a subgroup of subjects at baseline (2/15) or only after stimulation (3/15). When detectable, C-peptide increased 2.9-fold [95% CI: 1.2-7.1] during the hyperglycemia phase and 14.1-fold [95% CI: 3.1-65.2] during the hyperglycemia + GLP-1 phase, and 22.3-fold [95% CI: 5.6-89.1] during hyperglycemia + GLP-1 + arginine phase when compared with baseline. The same subset of patients with a C-peptide response were identified during the mixed meal stimulation test as during the clamp. There was an inhibition of glucagon secretion (0.72-fold, [95% CI: 0.63-0.84]) during the glucose clamp irrespective of the presence of detectable beta cell function. Proinsulin was only present in a subset of subjects with detectable C-peptide (3/15) and proinsulin mimicked the C-peptide response to the different stimuli when detectable. Residual beta cells in longstanding type 1 diabetes respond adequately to different stimuli and could be of clinical benefit.NEW & NOTEWORTHY If beta cell function is detectable, the beta cells react relatively normal to the different stimuli except for the first phase response to intravenous glucose. An oral mixed meal followed by an intravenous arginine bolus can identify residual beta cell function/mass as well as the more commonly used glucose potentiated arginine-induced insulin secretion during a hyperglycemic clamp.


Assuntos
Arginina , Peptídeo C , Diabetes Mellitus Tipo 1 , Alimentos Formulados , Peptídeo 1 Semelhante ao Glucagon , Glucose , Ilhotas Pancreáticas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Arginina/administração & dosagem , Arginina/farmacologia , Glicemia/metabolismo , Peptídeo C/sangue , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/administração & dosagem , Glucose/metabolismo , Técnica Clamp de Glucose , Hiperglicemia/metabolismo , Insulina/metabolismo , Insulina/administração & dosagem , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos
16.
Cytotherapy ; 26(8): 930-938, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520411

RESUMO

BACKGROUND AIMS: Rheumatoid arthritis (RA) is characterized by an overactive immune system, with limited treatment options beyond immunosuppressive drugs or biological response modifiers. Human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) represent a novel alternative, possessing diverse immunomodulatory effects. In this study, we aimed to elucidate the therapeutic effects and underlying mechanisms of hESC-MSCs in treating RA. METHODS: MSC-like cells were differentiated from hESC (hESC-MSCs) and cultured in vitro. Cell proliferation was assessed using Cell Counting Kit-8 assay and Ki-67 staining. Flow cytometry was used to analyze cell surface markers, T-cell proliferation and immune cell infiltration. The collagen-induced arthritis (CIA) mouse model and bleomycin-induced model of lung fibrosis (BLE) were established and treated with hESC-MSCs intravenously for in vivo assessment. Pathological analyses, reverse transcription-quantitative polymerase chain reaction and Western blotting were conducted to evaluate the efficacy of hESC-MSCs treatment. RESULTS: Intravenous transplantation of hESC-MSCs effectively reduced inflammation in CIA mice in this study. Furthermore, hESC-MSC administration enhanced regulatory T cell infiltration and activation. Additional findings suggest that hESC-MSCs may reduce lung fibrosis in BLE mouse models, indicating their potential to mitigate complications associated with RA progression. In vitro experiments revealed a significant inhibition of T-cell activation and proliferation during co-culture with hESC-MSCs. In addition, hESC-MSCs demonstrated enhanced proliferative capacity compared with traditional primary MSCs. CONCLUSIONS: Transplantation of hESC-MSCs represents a promising therapeutic strategy for RA, potentially regulating T-cell proliferation and differentiation.


Assuntos
Artrite Reumatoide , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Artrite Reumatoide/terapia , Artrite Reumatoide/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Fibrose Pulmonar/terapia , Fibrose Pulmonar/patologia , Células-Tronco Embrionárias Humanas/citologia , Proliferação de Células , Inflamação/terapia , Inflamação/patologia , Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Artrite Experimental/terapia , Artrite Experimental/patologia , Artrite Experimental/imunologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-39382753

RESUMO

The prevalence of type-2 diabetes mellitus (T2DM) has increased over 10-fold in the past 40 years in China, which now has the largest T2DM population in the world. Insulin resistance and ß-cell dysfunction are the typical features of T2DM. Although both factors play a role, decreased ß-cell function and ß-cell mass are the predominant factors for progression to T2DM. Considering the differences between Chinese T2DM patients and those of other ethnicities, it is important to characterize ß-cell dysfunction in Chinese patients during T2DM progression. Herein, we reviewed the studies on the relationships between ß-cell function and T2DM progression in the Chinese population and discussed the differences among individuals of varying ethnicities. Meanwhile, we summarized the risk factors and current treatments of T2DM in Chinese individuals and discussed their impacts on ß-cell function with the hope of identifying a better T2DM therapy.

18.
Pharmacol Res ; 203: 107157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531504

RESUMO

There are multiple disease-modifying immunotherapies showing the potential of preventing or delaying the progression of type 1 diabetes (T1D). We designed and performed this systematic review and meta-analysis to gain an overview of what a role immunotherapy plays in the treatment of T1D. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to December 2023. We included clinical trials of immunotherapy conducted in patients with T1D that reported the incidence of hypoglycemia or changes from baseline in at least one of following outcomes: 2 h and 4 h mixed-meal-stimulated C-peptide area under the curve (AUC), fasting C-peptide, daily insulin dosage, glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG). The results were computed as the weighted mean differences (WMDs) or odds ratios (ORs) and 95% confidence intervals (CIs) in random-effect model. In all, 34 clinical trials were included. When compared with control groups, 2 h C-peptide AUC was marginally higher in patient treated with nonantigen-based immunotherapies (WMD, 0.04nmol/L, 95% CI, 0.00-0.09 nmol/L, P=0.05), which was mainly driven by the effects of T cell-targeted therapy. A greater preservation in 4 h C-peptide AUC was observed in patients with nonantigen-based immunotherapies (WMD, 0.10nmol/L, 95% CI, 0.04-0.16 nmol/L, P=0.0007), which was mainly driven by the effects of tumor necrosis factor α (TNF-α) inhibitor and T cell-targeted therapy. After excluding small-sample trials, less daily insulin dosage was observed in patient treated with nonantigen-based immunotherapies when compared with control groups (WMD, -0.07units/kg/day, 95% CI, -0.11 to -0.03units/kg/day, P=0.0004). The use of antigen-based immunotherapies was also associated with a lower daily insulin dosage versus control groups (WMD, -0.11units/kg/day, 95% CI, -0.23 to -0.00units/kg/day, P=0.05). However, changes of HbA1c or FPG were comparable between nonantigen-based immunotherapies or antigen-based immunotherapies and control groups. The risk of hypoglycemia was not increased in patients treated with nonantigen-based immunotherapies or patients treated with antigen-based immunotherapies when compared with control groups. In conclusion, nonantigen-based immunotherapies were associated with a preservation of 2 h and 4 h C-peptide AUC in patients with T1D when compared with the controls, which was mainly driven by the effects of TNF-a inhibitor and T cell-targeted therapy. Both nonantigen-based immunotherapies and antigen-based immunotherapies tended to reduce the daily insulin dosage in patients with T1D when compared with the controls. However, they did not contribute to a substantial improvement in HbA1c or FPG. Both nonantigen-based immunotherapies and antigen-based immunotherapies were well tolerated with not increased risk of hypoglycemia in patients with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Imunoterapia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Imunoterapia/métodos , Hipoglicemiantes/uso terapêutico , Glicemia/efeitos dos fármacos , Insulina/uso terapêutico , Insulina/imunologia , Hemoglobinas Glicadas/metabolismo
19.
Diabetes Obes Metab ; 26(2): 503-511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37860918

RESUMO

INTRODUCTION: To compare responses to basal insulin glargine 300 U/ml (IGlar-300) and 100 U/ml (IGlar-100) in newly defined subphenotypes of type 2 diabetes. METHODS: Insulin-naive participants (n = 858) from the EDITION 3 trial were assigned to subphenotypes 'Mild Age-Related Diabetes (MARD)', 'Mild Obesity Diabetes (MOD)', 'Severe Insulin Resistant Diabetes (SIRD)' and 'Severe Insulin Deficient Diabetes (SIDD)'. Key variables were analysed at baseline and 26 weeks. RESULTS: Participants were comprised of MOD 56.1% (n = 481), SIDD 22.1% (n = 190), MARD 18.2% (n = 156) and SIRD 3.0% (n = 26). After 26 weeks a similar decrease in glycated haemoglobin (HbA1c) and fasting plasma glucose (FPG) of 16-19 mmol/mol and 1.4-1.7 mmol/L, respectively, occurred in MARD and MOD with both insulins. SIDD had the most elevated HbA1c and FPG (80-83 mmol/mol/11.1-11.4 mmol/L) and reduction in both HbA1c and FPG was greater with IGlar-100 than with IGlar-300 (-18 vs. -15 mmol/mol and -1.6 vs. -1.3 mmol/L, respectively; each p = .03). In SIDD, despite receiving the highest basal insulin doses, HbA1c decline (57-60 mmol/mol/7.3-7.6%) was suboptimal at week 26. In MOD and SIDD lower incidences with IGlar-300 were found for level 1 nocturnal hypoglycaemia [odds ratio (OR) 0.59, 95% confidence intervals (CI) 0.36-0.97; OR 0.49, 95% CI 0.24-0.99]. In addition, fewer level 2 hypoglycaemia episodes occurred at any time with IGlar-300 in SIDD (OR 0.31, 95% CI 0.13-0.77). CONCLUSION: Both insulins produce comparable outcomes in type 2 diabetes subphenotypes, but in SIDD, add-on treatment to basal insulin is required to achieve glycaemic targets.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Resistência à Insulina , Humanos , Glicemia/análise , Hemoglobinas Glicadas , Hipoglicemia/induzido quimicamente , Hipoglicemia/prevenção & controle , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Insulina Glargina/efeitos adversos , Insulina Glargina/uso terapêutico , Insulina Regular Humana/efeitos adversos , Insulina Regular Humana/uso terapêutico
20.
Diabetes Obes Metab ; 26(2): 611-621, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953677

RESUMO

AIMS: To elucidate the clinical determinants of the coefficient of variation (CV) of glucose by analysing the pancreatic ß-cell function of subjects with type 2 diabetes mellitus (T2DM). METHODS: A total of 716 Chinese subjects with T2DM were included. Continuous glucose monitoring (CGM) was used to assess blood glucose, and the CV was calculated. C-peptide concentration at 0, 0.5, 1, 2 and 3 hours (Cp0h, Cp0.5h, Cp1h, Cp2h and Cp3h, respectively) was measured after a standard 100-g steamed bun meal test to assess pancreatic ß-cell function. The determinants of glucose variability defined by the CV of CGM values were explored from two perspectives: the CV of qualitative variables and the CV of quantitative variables. RESULTS: Our data revealed that C-peptide concentration (Cp0h, Cp0.5h, Cp1h, Cp2h, Cp3h), area under the curve for C-peptide concentration at 0.5 and 3 hours (AUC-Cp0.5h and AUC-Cp3h) decreased with increasing CV quartile (P < 0.05). The CV was negatively correlated with homeostatic model assessment of ß-cell function index, C-peptide concentration at all timepoints, and AUC-Cp0.5h and AUC-Cp3h (P < 0.001). Quantile regression analysis showed that AUC-Cp0.5h had an overall negative effect on the CV in the 0.05 to 0.95 quartiles, and AUC-Cp3h tended to have a negative effect on the CV in the 0.2 to 0.65 quartiles. After adjusting for confounders, multinomial logistic regression showed that each 1-unit increase in AUC-Cp0.5h was associated with a 31.7% reduction in the risk of unstable glucose homeostasis (CV > 36%; P = 0.036; odds ratio 0.683; 95% confidence interval 0.478-0.976). We also identified the AUC-Cp0.5h (0.735 ng/mL) and AUC-Cp3h (13.355 ng/mL) cut-off values for predicting unstable glucose homeostasis (CV >36%) in T2DM subjects. CONCLUSION: Our study suggests that impaired pancreatic ß-cell function may be a clinical determining factor of CV of glucose in people with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Glicemia/análise , Glucose , Automonitorização da Glicemia , Peptídeo C , Monitoramento Contínuo da Glicose , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA