Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430911

RESUMO

To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution.


Assuntos
Cabras , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Feminino , Animais , Gravidez , Cabras/genética , Fosfatidilinositol 3-Quinases , Lactação/genética , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578813

RESUMO

Skeletal muscle cells, albeit classified as vitamin D receptor (VDR)-poor cells, are finely controlled by vitamin D through genomic and non-genomic mechanisms. Skeletal muscle constantly undergoes cell remodeling, a complex system under multilevel regulation, mainly orchestrated by the satellite niche in response to a variety of stimuli. Cell remodeling is not limited to satisfy reparative and hypertrophic needs, but, through myocyte transcriptome/proteome renewal, it warrants the adaptations necessary to maintain tissue integrity. While vitamin D insufficiency promotes cell maladaptation, restoring vitamin D levels can correct/enhance the myogenic program. Hence, vitamin D fortified foods or supplementation potentially represents the desired approach to limit or avoid muscle wasting and ameliorate health. Nevertheless, consensus on protocols for vitamin D measurement and supplementation is still lacking, due to the high variability of lab tests and of the levels required in different contexts (i.e., age, sex, heath status, lifestyle). This review aims to describe how vitamin D can orchestrate skeletal muscle cell remodeling and myogenic programming, after reviewing the main processes and cell populations involved in this important process, whose correct progress highly impacts on human health. Topics on vitamin D optimal levels, supplementation and blood determination, which are still under debate, will be addressed.


Assuntos
Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Receptores de Calcitriol/metabolismo , Vitamina D/uso terapêutico , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/metabolismo , Vitaminas/uso terapêutico
3.
FASEB J ; 33(5): 6551-6563, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794428

RESUMO

Previous studies have reported the pathogenic role of C-reactive protein (CRP) during diabetic kidney disease (DKD) in human CRP transgenic and Crp-/- mice. However, because humans and mice have inverse acute phase expression patterns of CRP and serum amyloid P component, this could lead to the inaccurate evaluation of CRP function with the above-mentioned CRP transgenic mouse. But different from mice, rats have the same acute phase protein expression pattern as human, which might avoid this problem and be a better choice for CRP function studies. To dispel this doubt and accurately define the role of CRP during diabetic nephropathy, we created the first Crp-/- rat model, which we treated with streptozocin to induce DKD for in vivo studies. Moreover, an established cell line (human kidney 2) was used to further investigate the pathologic mechanisms of CRP. We found that CRP promotes epithelial-mesenchymal transition (EMT) through Wnt/ß-catenin and ERK1/2 signaling, which are dependent on CRP binding to FcγRII on apoptotic cells. By promoting EMT, CRP was demonstrated to accelerate the development of DKD. We thus present convincing evidence demonstrating CRP as a therapeutic target for DKD treatment.-Zhang, L., Shen, Z.-Y., Wang, K., Li, W., Shi, J.-M., Osoro, E. K., Ullah, N., Zhou, Y., Ji, S.-R. C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/ß-catenin and ERK signaling in streptozocin-induced diabetic nephropathy.


Assuntos
Proteína C-Reativa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Transição Epitelial-Mesenquimal , Sistema de Sinalização das MAP Quinases , Via de Sinalização Wnt , Animais , Proteína C-Reativa/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , beta Catenina/genética , beta Catenina/metabolismo
4.
Methods ; 90: 85-94, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26213183

RESUMO

The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis.


Assuntos
Herpesvirus Humano 3/fisiologia , Interações Hospedeiro-Patógeno , Análise de Célula Única/métodos , Linfócitos T/virologia , Humanos , Análise de Componente Principal , Transdução de Sinais , Processos Estocásticos
5.
Blood Cells Mol Dis ; 51(3): 195-202, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23880461

RESUMO

In an infected erythrocyte (iRBC), renovation and decoration are crucial for malarial parasite survival, pathogenesis and reproduction. Host cell remodeling is mediated by an array of diverse parasite-encoded export proteins that traffic within iRBC. These remodeling proteins extensively modify the membrane and cytoskeleton of iRBC and help in formation of parasite-induced novel organelles such as 'Maurer's Cleft (MC), tubulovesicular network (TVN) and parasitophorous vacuole membrane (PVM) inside the iRBC. The genome sequence of Plasmodium falciparum shows expansion of export proteins, which suggests a complex requirement of these export proteins for specific pathogenesis and erythrocyte remodeling. Plasmodium helical intersperse sub-telomeric (PHIST) is a family of seventy-two small export proteins and many of its recently discovered functional characteristics suggest an intriguing putative role in modification of an iRBC. This review highlights the recent advances in parasite genomics, proteomics, and cell biology studies unraveling the host cell modification; providing a speculation on the impact of PHIST proteins in modification of the iRBC.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Interações Hospedeiro-Patógeno , Humanos
6.
Adv Mater ; 35(30): e2211415, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096955

RESUMO

Dendritic cells (DCs) are crucial mediators of innate and adaptive antitumor immunity, whereas exogenously and endogenously driven lipid accumulation causes immune tolerance of tumor-associated DCs (TADCs) and thereby diminishes tumor responsiveness to various therapies. Herein, a type of multilevel lipid rewiring nanoparticles (NPs) for TADC revitalization is designed. These self-assembled NPs specifically bind to the lipid transport receptor Msr1 on the TADC surface and orchestrate the restriction of extracellular lipid uptake, cytoplasmic de novo lipid biosynthesis and nuclear lipogenic gene transcription. It is found that the slimming of TADCs via the three-in-one lipid metabolic reprogramming substantially promotes their maturation and rehabilitate their functions in inflammatory cytokine production, cytotoxic T cell recruitment, and tumor inhibition. Significantly, tumor resistance to immune checkpoint blockade therapy is further overcome. The study presents a non-canonical strategy to remodel tumor-infiltrating immune cells and paves a new path for improving the efficacy of cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/patologia , Linfócitos T Citotóxicos , Imunoterapia , Células Dendríticas , Lipídeos
7.
Biomolecules ; 13(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238729

RESUMO

This study conducted transcriptome sequencing of goat-mammary-gland tissue at the late lactation (LL), dry period (DP), and late gestation (LG) stages to reveal the expression characteristics and molecular functions of circRNAs during mammary involution. A total of 11,756 circRNAs were identified in this study, of which 2528 circRNAs were expressed in all three stages. The number of exonic circRNAs was the largest, and the least identified circRNAs were antisense circRNAs. circRNA source gene analysis found that 9282 circRNAs were derived from 3889 genes, and 127 circRNAs' source genes were unknown. Gene Ontology (GO) terms, such as histone modification, regulation of GTPase activity, and establishment or maintenance of cell polarity, were significantly enriched (FDR < 0.05), which indicates the functional diversity of circRNAs' source genes. A total of 218 differentially expressed circRNAs were identified during the non-lactation period. The number of specifically expressed circRNAs was the highest in the DP and the lowest in LL stages. These indicated temporal specificity of circRNA expression in mammary gland tissues at different developmental stages. In addition, this study also constructed circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks related to mammary development, immunity, substance metabolism, and apoptosis. These findings help understand the regulatory role of circRNAs in mammary cell involution and remodeling.


Assuntos
MicroRNAs , RNA Circular , Feminino , Gravidez , Animais , RNA Circular/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Lactação/genética , Cabras/genética , Cabras/metabolismo , Redes Reguladoras de Genes
8.
Biomed Pharmacother ; 165: 115025, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37385209

RESUMO

Diabetic kidney disease (DKD) is a prevalent complication of diabetes and a major secondary factor leading to end-stage renal disease. The kidney, a vital organ, is composed of a heterogeneous group of intrinsic cells, including glomerular endothelial cells, podocytes, mesangial cells, tubular epithelial cells, and interstitial fibroblasts. In the context of DKD, hyperglycemia elicits direct or indirect injury to these intrinsic cells, leading to their structural and functional changes, such as cell proliferation, apoptosis, and transdifferentiation. The dynamic remodeling of intrinsic cells represents an adaptive response to stimulus during the pathogenesis of diabetic kidney disease. However, the persistent stimulus may trigger an irreversible remodeling, leading to fibrosis and functional deterioration of the kidney. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, a new class of hypoglycemic drugs, exhibit efficacy in reducing blood glucose levels by curtailing renal tubular glucose reabsorption. Furthermore, SGLT2 inhibitors have been shown to modulate intrinsic cell remodeling in the kidney, ameliorate kidney structure and function, and decelerate DKD progression. This review will elaborate on the intrinsic cell remodeling in DKD and the underlying mechanism of SGLT2 inhibitors in modulating it from the perspective of the renal intrinsic cell, providing insights into the pathogenesis of DKD and the renal protective action of SGLT2 inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Nefropatias Diabéticas/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Células Endoteliais , Rim , Hipoglicemiantes/farmacologia , Glucose/farmacologia , Diabetes Mellitus Tipo 2/complicações
9.
ACS Nano ; 17(20): 19793-19809, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37805928

RESUMO

In pancreatic cancer, excessive desmoplastic stroma severely impedes drug access to tumor cells. By reverting activated pancreatic stellate cells (PSCs) to quiescence, all-trans retinoic acid (ATRA) can attenuate their stromal synthesis and remodel the tumor-promoting microenvironment. However, its modulatory effects have been greatly weakened due to its limited delivery to PSCs. Therefore, we constructed a tripeptide RFC-modified gelatin/oleic acid nanoparticle (RNP@ATRA), which delivered ATRA in an enzyme-triggered popcorn-like manner and effectively resolved the delivery challenges. Specifically, surface RFC was cleaved by aminopeptidase N (APN) on the tumor endothelium to liberate l-arginine, generating nitric oxide (NO) for tumor-specific vasodilation. Then, massive nanoparticles were pushed from the vessels into tumors, showing 5.1- and 4.0-fold higher intratumoral accumulation than free ATRA and APN-inert nanoparticles, respectively. Subsequently, in the interstitium, matrix metalloproteinase-2-induced gelatin degradation caused RNP@ATRA to rapidly release ATRA, promoting its interstitial penetration and PSC delivery. Thus, activated PSCs were efficiently reverted to quiescence, and stroma secretion and vascular compression were reduced, thereby enhancing intratumoral delivery of small-molecule or nanosized chemotherapeutics. Ultimately, RNP@ATRA combined with chemotherapeutics markedly suppressed tumor growth and metastasis without causing additional toxicities. Overall, this work provides a potential nanoplatform for the efficient delivery of PSC-modifying agents in pancreatic cancer and other stroma-rich tumors.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Metaloproteinase 2 da Matriz , Gelatina , Neoplasias Pancreáticas/patologia , Tretinoína/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
10.
Plants (Basel) ; 11(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35050085

RESUMO

The microalga Haematococcus lacustris (formerly H. pluvialis) is able to accumulate high amounts of the carotenoid astaxanthin in the course of adaptation to stresses like salinity. Technologies aimed at production of natural astaxanthin for commercial purposes often involve salinity stress; however, after a switch to stressful conditions, H. lacustris experiences massive cell death which negatively influences astaxanthin yield. This study addressed the possibility to improve cell survival in H. lacustris subjected to salinity via manipulation of the levels of autophagy using AZD8055, a known inhibitor of TOR kinase previously shown to accelerate autophagy in several microalgae. Addition of NaCl in concentrations of 0.2% or 0.8% to the growth medium induced formation of autophagosomes in H. lacustris, while simultaneous addition of AZD8055 up to a final concentration of 0.2 µM further stimulated this process. AZD8055 significantly improved the yield of H. lacustris cells after 5 days of exposure to 0.2% NaCl. Strikingly, this occurred by acceleration of cell growth, and not by acceleration of aplanospore formation. The level of astaxanthin synthesis was not affected by AZD8055. However, cytological data suggested a role of autophagosomes, lysosomes and Golgi cisternae in cell remodeling during high salt stress.

11.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497155

RESUMO

The phenotypic plasticity of Cryptococcus neoformans is widely studied and demonstrated in vitro, but its influence on pathogenicity remains unclear. In this study, we investigated the dynamics of cryptococcal cell and transcriptional remodeling during pulmonary infection in a murine model. We showed that in Cryptococcus neoformans, cell size reduction (cell body ≤ 3 µm) is important for initial adaptation during infection. This change was associated with reproductive fitness and tissue invasion. Subsequently, the fungus develops mechanisms aimed at resistance to the host's immune response, which is determinant for virulence. We investigated the transcriptional changes involved in this cellular remodeling and found an upregulation of transcripts related to ribosome biogenesis at the beginning (6 h) of infection and a later (10 days) upregulation of transcripts involved in the inositol pathway, energy production, and the proteasome. Consistent with a role for the proteasome, we found that its inhibition delayed cell remodeling during infection with the H99 strain. Altogether, these results further our understanding of the infection biology of C. neoformans and provide perspectives to support therapeutic and diagnostic targets for cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Animais , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Modelos Animais de Doenças , Criptococose/microbiologia , Virulência
12.
Int J Biol Macromol ; 222(Pt B): 2158-2175, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209911

RESUMO

Long noncoding RNA (lncRNA) can regulate mammary gland development and lactation physiological activities. However, the molecular genetic mechanisms of lncRNA in mammary gland involution and cell remodeling remain unclear. This work analyzed the expression characteristics and molecular functions of lncRNA in goat mammary gland tissue at the late lactation (LL), dry period (DP), and late gestation (LG) stages. Sequencing results showed that 3074 lncRNAs were identified in non-lactating goat mammary gland tissue. Statistical analysis of lncRNA length characteristics and exon number found that goat lncRNAs were shorter in length, had fewer exons, and significantly lower expression levels than those of protein-coding genes. 331 differentially expressed lncRNAs were identified in the three comparison groups (LLvsDP, DPvsLG, and LLvsLG), which indicated that the lncRNAs expression at the transcriptional level were changed during mammary involution. Interestingly, lncRNAs were more actively expressed during the dry period compared to lactation, suggesting that lncRNAs in mammary glands are developmentally specific. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that lncRNAs could regulate immune function, cell proliferation, apoptosis, hormones, substance metabolism, transport, and intercellular communication in the mammary gland through various action modes. Among them, cis-acting lncRNAs enhanced the protection of mammary gland health during the dry period and late gestation. The above reflects the particular mechanisms of lncRNA to adapt to the developmental needs of mammary involution and remodeling. Furthermore, in the lncRNA-miRNA-mRNA network associated with mammary gland development, the expression of LOC102168552 was higher in late gestation than in the dry period and late lactation. Its expression was positively correlated with PRLR and negatively correlated with chi-miR-324-3p. Overexpression of LOC102168552 in goat mammary epithelial cells cultured in vitro could up-regulate PRLR to activate the prolactin signaling pathway by competitively binding to chi-miR-324-3p, promoting cell proliferation, reducing cell cycle arrest in the G1 / S phase, and inhibiting apoptosis. However, overexpression of LOC102168552 alone did not affect mammary cell growth status and the prolactin signaling pathway. This indicates that LOC102168552 must rely on chi-miR-324-3p to inhibit mammary cell apoptosis. In conclusion, the above analysis revealed that lncRNAs in goat mammary tissue are differentially expressed at different stages of involution. As expected, lncRNAs adaptively regulate various physiological activities during mammary gland involution through multiple modes of action, in preparation for a new round of lactation. These findings provide a reference and help further understand the regulatory role of lncRNAs in mammary cell involution and remodeling.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Prolactina/metabolismo , MicroRNAs/genética
13.
Mol Immunol ; 140: 35-46, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653793

RESUMO

Abnormal remodeling of the nasal mucosal epithelium and persistent chronic inflammation are important pathological features of chronic sinusitis with nasal polyps (CRSwNPs). In order to explore the molecular regulation mechanism of CRSwNPs, we performed iTRAQ protein profile analysis on 18 clinical samples collected (9 patients with nasal polyps and 9 healthy patients) and found that S100A11, a Ca2+-binding protein, was significantly higher in CRSwNPs. Subsequently, we demonstrated that S100A11 was mainly located in nasal mucosal epithelial cells and is up-regulated in human nasal epithelial stem/progenitor cells (hNESPCs) from CRSwNPs patients and CRSwNPs epithelial cell model established with S. aureus. To determine the functional role of S100A11 and the signal pathways in epithelial cells, we constructed S100A11 overexpression vector, small interfering RNA, recombinant protein-S100A11 (rh-S100A11) and RAGE inhibitor (sRAGE). Results showed that upregulation of S100A11 inhibited epithelial cell viability and promoted apoptosis and inflammation, in addition, S100A11 can regulate the signal homeostasis of AMPK-STAT3 via RAGE mediation in epithelial cells. Our findings suggest that S100A11 is involved in CRSwNPs epithelial tissue remodeling and inflammatory response regulation and may be a useful target for CRSwNPs therapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antígenos de Neoplasias/metabolismo , Células Epiteliais/metabolismo , Inflamação/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pólipos Nasais/patologia , Proteínas S100/metabolismo , Fator de Transcrição STAT3/metabolismo , Sinusite/patologia , Adolescente , Adulto , Idoso , Apoptose , Linhagem Celular , Proliferação de Células , Criança , Doença Crônica , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Nariz/patologia , Transdução de Sinais , Staphylococcus aureus/fisiologia , Regulação para Cima , Adulto Jovem
14.
J Nutr Biochem ; 89: 108563, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326841

RESUMO

Asthma is characterized by chronic inflammation and tissue remodeling of the airways. Remodeling is resistant to pharmaceutical therapies. This study investigated the effect of zinc salicylate-methylsulfonylmethane (Zn-Sal-MSM) compared to zinc salicylate (Zn-Sal), or sodium salicylate (Na-Sal), or zinc chloride (ZnCl2) on remodeling parameters of human airway smooth muscle cells (ASMC). Human ASMC obtained from asthma patients (n=7) and non-asthma controls (n=7) were treated with one of the reagents. Cell proliferation and viability was determined by direct cell counts and MTT assay. The expression of and phosphorylation proteins was determined by Western-blotting, ELISA, immunofluorescence, and mass spectrometry. Extracellular matrix deposition by ELISA. Zn-Sal-MSM, Zn-Sal and Na-Sal (0.1-100 µg/mL) significantly reduced PDGF-BB-induced proliferation in a concentration dependent manner, while ZnCl2 was toxic. The reduced proliferation correlated with increased expression of the cell cycle inhibitor p21(Waf1/Cip1), and reduced activity of Akt, p70S6K, and Erk1/2. Zn-Sal-MSM, Zn-Sal, but not Na-Sal reduced the deposition of fibronectin and collagen type-I. Furthermore, Zn-Sal-MSM reduced the mitochondria specific COX4 expression. Mass spectrometry indicated that Zn-Sal-MSM modified the expression of several signaling proteins and zinc-dependent enzymes. In conclusion, Zn-Sal-MSM and Zn-Sal potentially prevent airway wall remodeling in asthma by inhibition of both the Erk1/2 and mTOR signaling pathways.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Salicilatos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Zinco/farmacologia , Adulto , Idoso , Animais , Asma/metabolismo , Asma/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/efeitos dos fármacos , Feminino , Fibronectinas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Front Cell Dev Biol ; 9: 782293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083215

RESUMO

Plasmodium falciparum undergoes a series of asexual replications in human erythrocytes after infection, which are effective targets for combatting malaria. Here, we report roles of an ApiAP2 transcription factor PfAP2-EXP2 (PF3D7_0611200) in the intraerythrocytic developmental cycle of P. falciparum. PfAP2-EXP2 conditional knockdown resulted in an asexual growth defect but without an appreciable effect on parasite morphology. Further ChIP-seq analysis revealed that PfAP2-EXP2 targeted genes related to virulence and interaction between erythrocytes and parasites. Especially, PfAP2-EXP2 regulation of euchromatic genes does not depend on recognizing specific DNA sequences, while a CCCTAAACCC motif is found in its heterochromatic binding sites. Combined with transcriptome profiling, we suggest that PfAP2-EXP2 is participated in the intraerythrocytic development by affecting the expression of genes related to cell remodeling at the schizont stage. In summary, this study explores an ApiAP2 member plays an important role for the P. falciparum blood-stage replication, which suggests a new perspective for malaria elimination.

16.
Int J Clin Exp Pathol ; 12(9): 3268-3278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31934170

RESUMO

BACKGROUND: High-mobility graoup box protein 1 (HMGB1) has been shown to mediate a wide range of pathologic responses by interacting with RAGE (receptor for advanced glycation endproducts) and TLRs (Toll-like receptors). Our previous study showed that HMGB1 has been involved in pathogenesis of airway remodeling in an allergen-induced chronic mice asthma model. Increased airway smooth muscle (ASM) mass is a vital feature of airway remodeling. OBJECTIVE: To evaluate the effect of HMGB1 on proliferation of ASMs and the underlying mechanisms. METHODS: Rat airway smooth muscle cells (RASMs) were obtained by primary explant techniques. We investigated the effect of HMGB1 on the proliferation of RASMs. To identify which receptors and signaling pathways be involved in proliferation of RASMs, we performed western blot and CCK-8 assay by specific receptor blockade and inhibition of MAPK (p38, JNK and ERK) and NF-κB signaling pathways. RESULTS: HMGB1 stimulated RASMs proliferation in a dose- and time-dependent manner and also increased proliferating cell nuclear antigen (PCNA) and RAGE expression of RASMs. The inhibitor of RAGE, but not TLR2 and TLR4, reversed HMGB1-induced RASM proliferation and PCNA expression. Incubation of RASMs with HMGB1 caused a rapid increase in P65 and ERK phosphorylation. RASM proliferation and PCNA expression toward HMGB1 were significantly inhibited by the inhibitors of ERK and NF-κB. CONCLUSION: HMGB1 induces proliferation of RASMs through a RAGE-dependent activation of ERK and NF-κB signaling pathways.

17.
Front Physiol ; 10: 1278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649556

RESUMO

Fbxo7 is the substrate-recognition subunit of an SCF-type ubiquitin E3 ligase complex. It has physiologically important functions in regulating mitophagy, proteasome activity and the cell cycle in multiple cell types, like neurons, lymphocytes and erythrocytes. Here, we show that in addition to the previously known Parkinsonian and hematopoietic phenotypes, male mice with reduced Fbxo7 expression are sterile. In these males, despite successful meiosis, nuclear elongation and eviction of histones from chromatin, the developing spermatids are phagocytosed by Sertoli cells during late spermiogenesis, as the spermatids undergo cytoplasmic remodeling. Surprisingly, despite the loss of all germ cells, there was no evidence of the symplast formation and cell sloughing that is typically associated with spermatid death in other mouse sterility models, suggesting that novel cell death and/or cell disposal mechanisms may be engaged in Fbxo7 mutant males. Mutation of the Drosophila Fbxo7 ortholog, nutcracker (ntc) also leads to sterility with germ cell death during cytoplasmic remodeling, indicating that the requirement for Fbxo7 at this stage is conserved. The ntc phenotype was attributed to decreased levels of the proteasome regulator, DmPI31 and reduced proteasome activity. Consistent with the fly model, we observe a reduction in PI31 levels in mutant mice; however, there is no alteration in proteasome activity in whole mouse testes. Our results are consistent with findings that Fbxo7 regulates PI31 protein levels, and indicates that a defect at the late stages of spermiogenesis, possibly due to faulty spatial dynamics of proteasomes during cytoplasmic remodeling, may underlie the fertility phenotype in mice.

18.
Elife ; 62017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252383

RESUMO

Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Patógeno , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos , Camundongos , Pirimidinas/metabolismo , Vitaminas/metabolismo
19.
Tissue Eng Part A ; 22(21-22): 1274-1285, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27673714

RESUMO

Interest in decellularized tissues has steadily gained as potential solutions for degenerative diseases and traumatic events, replacing sites of missing tissue, and providing the relevant biochemistry and microstructure for tissue ingrowth and regeneration. Osteoarthritis, a progressive and debilitating disease, is often initiated with the formation of a focal defect in the otherwise smooth surface of articular cartilage. Decellularized cartilage tissue, which maintains the structural complexity of the native extracellular matrix, has the potential to provide a clinically relevant solution to focal defects or large tissue damage, possibly even circumventing or complementing current techniques such as microfracture and mosaicplasty. However, it is currently unclear whether implantation of decellularized cartilage in vivo may provide a mechanically and biochemically relevant platform to promote cell remodeling and repair. We examined whole decellularized osteochondral allografts implanted in the ovine trochlear groove to investigate cellular remodeling and repair tissue quality compared to empty defects and contralateral controls (healthy cartilage). At 3 months postsurgery, cells were observed in both the decellularized tissue and empty defects, although both at significantly lower levels than healthy cartilage. Qualitative and quantitative histological analysis demonstrated maintenance of cartilage features of the decellularized implant similar to healthy cartilage groups. Noninvasive analysis by quantitative magnetic resonance imaging showed no difference in T1ρ and T2* between all groups. Investigation of the mechanical properties of repair tissue showed significantly lower elasticity in decellularized implants and empty defects compared to healthy cartilage, but similar tribological quantities. Overall, this study suggests that decellularized cartilage implants are subject to cellular remodeling in an in vivo environment and may provide a potential tissue engineering solution to cartilage defect interventions.


Assuntos
Cartilagem/química , Matriz Extracelular/química , Implantes Experimentais , Ulna/metabolismo , Aloenxertos , Animais , Ovinos
20.
Dev Cell ; 37(1): 15-33, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27052834

RESUMO

How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase ß subunit (A-Sß), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sß and the GTP-specific SCSß (G-Sß), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sß in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation.


Assuntos
Caspases/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Proteínas Culina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mitocôndrias/metabolismo , Espermátides/metabolismo , Animais , Apoptose/fisiologia , Ativação Enzimática , Masculino , Proteínas dos Microfilamentos/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Espermátides/crescimento & desenvolvimento , Succinato-CoA Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA