RESUMO
Cetaceans are fully aquatic mammals that descended from terrestrial ancestors, an iconic evolutionary transition characterized by adaptations for underwater foraging via breath-hold diving. Although the evolutionary history of this specialized behavior is challenging to reconstruct, coevolving sensory systems may offer valuable clues. The dim-light visual pigment, rhodopsin, which initiates phototransduction in the rod photoreceptors of the eye, has provided insight into the visual ecology of depth in several aquatic vertebrate lineages. Here, we use ancestral sequence reconstruction and protein resurrection experiments to quantify light-activation metrics in rhodopsin pigments from ancestors bracketing the cetacean terrestrial-to-aquatic transition. By comparing multiple reconstruction methods on a broadly sampled cetartiodactyl species tree, we generated highly robust ancestral sequence estimates. Our experimental results provide direct support for a blue-shift in spectral sensitivity along the branch separating cetaceans from terrestrial relatives. This blue-shift was 14 nm, resulting in a deep-sea signature (λmax = 486 nm) similar to many mesopelagic-dwelling fish. We also discovered that the decay rates of light-activated rhodopsin increased in ancestral cetaceans, which may indicate an accelerated dark adaptation response typical of deeper-diving mammals. Because slow decay rates are thought to help sequester cytotoxic photoproducts, this surprising result could reflect an ecological trade-off between rod photoprotection and dark adaptation. Taken together, these ancestral shifts in rhodopsin function suggest that some of the first fully aquatic cetaceans could dive into the mesopelagic zone (>200 m). Moreover, our reconstructions indicate that this behavior arose before the divergence of toothed and baleen whales.
Assuntos
Mergulho , Visão Noturna , Rodopsina , Baleias , Animais , Evolução Biológica , Fósseis , Rodopsina/metabolismo , Baleias/genética , Baleias/fisiologiaRESUMO
Cetacean morbillivirus is an etiologic agent associated with strandings of live and dead cetacean species occurring sporadically or as epizootics worldwide. We report 2 cases of cetacean morbillivirus in humpback whales (Megaptera novaeangliae) in Brazil and describe the anatomopathological, immunohistochemical, and molecular characterization findings in the specimens.
Assuntos
Jubarte , Infecções por Morbillivirus , Morbillivirus , Filogenia , Animais , Morbillivirus/isolamento & purificação , Morbillivirus/genética , Morbillivirus/classificação , Brasil , Infecções por Morbillivirus/veterináriaRESUMO
Philopatric kin-based societies encourage a narrow breadth of conservative behaviours owing to individuals primarily learning from close kin, promoting behavioural homogeneity. However, weaker social ties beyond kin, and across a behaviourally diverse social landscape, could be sufficient to induce variation and a greater ecological niche breadth. We investigated a network of 457 photo-identified killer whales from Norway (548 encounters in 2008-2021) with diet data available (46 mixed-diet individuals feeding on both fish and mammals, and 411 exclusive fish-eaters) to quantify patterns of association within and between diet groups, and to identify underlying correlates. We genotyped a subset of 106 whales to assess patterns of genetic differentiation. Our results suggested kinship as main driver of social bonds within and among cohesive social units, while diet was most likely a consequence reflective of cultural diffusion, rather than a driver. Flexible associations within and between ecologically diverse social units led to a highly connected network, reducing social and genetic differentiation between diet groups. Our study points to a role of social connectivity, in combination with individual behavioural variation, in influencing population ecology in killer whales.
Assuntos
Orca , Animais , Orca/genética , Comportamento Social , Ecossistema , Comportamento Predatório , DietaRESUMO
Isolation by distance and biogeographical boundaries define patterns of population genetic structure for harbour porpoise along the Pacific coast from California to British Columbia. Until recently, inadequate sample sizes in many regions constrained efforts to characterise population genetic structure throughout the coastal waters of Alaska. Here, tissue samples from beachcast strandings and fisheries bycatch were supplemented with targeted environmental DNA (eDNA) samples in key regions of Alaska coastal and inland waters. Using a geographically explicit, hierarchical approach, we examined the genetic structure of Alaska harbour porpoises, using both mitochondrial DNA (mtDNA) sequence data and multilocus SNP genotypes. Despite a lack of evidence of genetic differentiation from nuclear SNP loci, patterns of relatedness and genetic differentiation from mtDNA suggest natal philopatry at multiple geographic scales, with limited gene flow among sites possibly mediated by male dispersal. A priori clustering of sampled areas at an intermediate scale (eastern and western Bering Sea, Gulf of Alaska and Southeast Alaska) best explained the genetic variance (12.37%) among regions. In addition, mtDNA differentiation between the Gulf of Alaska and eastern Bering Sea, and among regions within the Gulf of Alaska, indicated significant genetic structuring of harbour porpoise populations in Southeast Alaska. The targeted collection of eDNA samples from strata within Southeast Alaska was key for elevating the statistical power of our mtDNA dataset, and findings indicate limited dispersal between neighbouring strata within coastal and inland waters. These results provide evidence supporting a population boundary within the currently recognised Southeast Alaska Stock. Together, these findings will prove useful for ongoing management efforts to reduce fisheries conflict and conserve genetic diversity in this iconic coastal species.
RESUMO
Assessing genetic structure and diversity in wildlife is particularly important in the context of climate change. The Arctic is rapidly warming, and endemic species must adapt quickly or face significant threats to persistence. Bowhead whales (Balaena mysticetus) and narwhals (Monodon monoceros) are two long-lived Arctic species with similar habitat requirements and are often seen together in the Canadian Arctic. Although their ranges overlap extensively, bowhead whales experienced significantly greater commercial whaling mortality than narwhals over several centuries. The similar habitat requirements but different harvest histories of these two species provide an opportunity to examine present-day genetic diversity and the demographic and genetic consequences of commercial whaling. We whole-genome resequenced contemporary Canadian Arctic bowhead whales and narwhals to delineate population structure and reconstruct demographic history. We found higher genetic diversity in bowhead whales compared to narwhals. However, bowhead whale effective population size sharply declined contemporaneously with the intense commercial whaling period. Narwhals, in contrast, exhibited recent growth in effective population size, likely reflecting exposure to limited opportunistic commercial harvest. Bowhead whales will likely continue to experience significant genetic drift in the future, leading to the erosion of genetic diversity. In contrast, narwhals do not seem to be at imminent risk of losing their current levels of genetic variation due to their long-term low effective population size and lack of evidence for a recent decline. This work highlights the importance of considering population trajectories in addition to genetic diversity when assessing the genetics of populations for conservation and management purposes.
Assuntos
Baleia Franca , Variação Genética , Dinâmica Populacional , Animais , Regiões Árticas , Baleia Franca/genética , Canadá , Mudança Climática , Densidade Demográfica , Ecossistema , CaçaRESUMO
The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.
Assuntos
Mergulho , Animais , Mergulho/fisiologia , Mamíferos/fisiologia , Bradicardia/metabolismo , Frequência Cardíaca/fisiologia , RespiraçãoRESUMO
We previously identified surfactant protein D (SP-D) in the bottlenose dolphin Tursiops truncatus as a unique evolutionary factor of the cetacean pulmonary immune system. In this short report, recombinant SP-D of bottlenose dolphin (dSP-D) was synthesized in mammalian cells, and its properties were analyzed in vitro. The recombinant proteins were purified using Ni-carrier or Co-carrier. Sodium dodecyl sulfate poly-acrylamide gel electrophoresis and western blotting revealed a 50 kDa major band with minor secondary bands. Enzyme-linked immunosorbent assay-like methods revealed that recombinant dSP-D bonded to gram-positive and gram-negative bacterial walls. Our findings suggest the clinical usefulness of dSP-D for cetacean pneumonia.
Assuntos
Golfinho Nariz-de-Garrafa , Proteína D Associada a Surfactante Pulmonar , Proteínas Recombinantes , Animais , Golfinho Nariz-de-Garrafa/genética , Golfinho Nariz-de-Garrafa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/metabolismo , Expressão Gênica , Clonagem MolecularRESUMO
Dolphins have become famous for their ability to perform a wide variety of athletic and acrobatic behaviors including high-speed swimming, maneuverability, porpoising and tail stands. Tail stands are a behavior where part of the body is held vertically above the water's surface, achieved through thrust produced by horizontal tail fluke oscillations. Strong, efficient propulsors are needed to generate the force required to support the dolphin's body weight, exhibiting chordwise and spanwise flexibility throughout the stroke cycle. To determine how thrust production, fluke flexibility and tail stroke kinematics vary with effort, six adult bottlenose dolphins (Tursiops truncatus) were tested at three different levels based on the position of the center of mass (COM) relative to the water's surface: low (COM below surface), medium (COM at surface) and high (COM above surface) effort. Additionally, fluke flexibility was measured as a flex index (FI=chord length/camber length) at four points in the stroke cycle: center stroke up (CU), extreme top of stroke (ET), center stroke down (CD) and extreme bottom of stroke (EB). Video recordings were analyzed to determine the weight supported above the water (thrust production), peak-to-peak amplitude, stroke frequency and FI. Force production increased with low, medium and high efforts, respectively. Stroke frequency also increased with increased effort. Amplitude remained constant with a mean 33.8% of body length. Significant differences were seen in the FI during the stroke cycle. Changes in FI and stroke frequency allowed for increased force production with effort, and the peak-to-peak amplitude was higher compared with that for horizontal swimming.
Assuntos
Golfinho Nariz-de-Garrafa , Trematódeos , Animais , Natação , Gravação em Vídeo , ÁguaRESUMO
Beluga whales are considered unique among odontocetes in their ability to visibly alter the appearance of their head by changing the shape of the melon, but only anecdotal observations are available to evaluate the use or potential function of these melon shapes. This study of belugas in professionally managed care aimed to establish an ethogram for the repertoire of categorizable melon shapes and then evaluate their potential function as intentional communication signals by determining if they were produced and elaborated during social interactions of varying behavioral contexts while in the line of sight of a recipient. Five different melon shapes were reliably identified in video observations of the primary study population (n = 4) and externally validated in a second aquarium population (n = 51). Among the 2570 melon shapes observed from the primary study subjects, melon shapes occurred 34 × more frequently during social interactions (1.72 per minute) than outside of social interactions (0.05 per minute). Melon shapes occurring during social interactions were performed within the line of sight of a recipient 93.6% of the time. The frequency of occurrence of the different melon shapes varied across behavioral contexts. Elaboration of melon shapes through extended duration and the occurrence of concurrent open mouth displays varied by shape type and across behavioral contexts. Melon shapes seem to function as visual displays, with some characteristics of intentional communication. This ability could yield adaptive benefits to belugas, given their complex social structure and hypothesized mating system that emphasizes pre-copulatory female mate choice.
Assuntos
Beluga , Gelatina , Animais , Feminino , Interação SocialRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), considered a zoonotic agent of wildlife origin, can infect various animal species, including wildlife in free-range and captive environments. Detecting susceptible species and potential reservoirs is crucial for preventing the transmission, spread, genetic evolution, and further emergence of viral variants that are major threats to global health. This study aimed to detect exposure or acute infection by SARS-CoV-2 in 420 animals from 40 different wildlife species, including terrestrial and aquatic mammals, from different regions of Spain during the 2020-2023 coronavirus disease 19 (COVID-19) pandemic. In total, 8/137 animals were positive for SARS-CoV-2 antibodies against the receptor binding domain and/or viral nucleoprotein according to independent ELISAs. However, only one ELISA-positive sample of a captive bottlenose dolphin (Tursiops truncatus) tested positive for SARS-CoV-2 neutralizing antibodies with a low titre (SNT50 38.15) according to a virus neutralization test. Cetaceans are expected to have a high risk of infection with SARS-CoV-2 according to early predictive studies due to the similarity of their angiotensin converting enzyme 2 cell receptor to that of humans. Moreover, of 283 animals analysed for SARS-CoV-2 RNA using RT-qPCR, none tested positive. Our results reinforce the importance of considering cetaceans at risk for SARS-CoV-2 infection and support taking preventive biosecurity measures when interacting with them, especially in the presence of individuals with suspected or confirmed COVID-19. Although most animals in this study tested negative for acute infection or viral exposure, ongoing surveillance of wildlife species and potentially susceptible animals is important to prevent future spillover events and detect potential novel reservoirs.
Assuntos
Animais Selvagens , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Animais , Espanha/epidemiologia , Animais Selvagens/virologia , COVID-19/veterinária , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/transmissão , COVID-19/prevenção & controle , Anticorpos Antivirais/sangue , Animais de ZoológicoRESUMO
Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.
Assuntos
Biomarcadores , Golfinho Nariz-de-Garrafa , Hidrocortisona , Poluentes Químicos da Água , Animais , Golfinho Nariz-de-Garrafa/metabolismo , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Monitoramento Ambiental , Fluorocarbonos , Estresse Fisiológico , Feminino , Masculino , South Carolina , FloridaRESUMO
BACKGROUND: Pathogenic Leptospira species are globally important zoonotic pathogens capable of infecting a wide range of host species. In marine mammals, reports of Leptospira have predominantly been in pinnipeds, with isolated reports of infections in cetaceans. CASE PRESENTATION: On 28 June 2021, a 150.5 cm long female, short-beaked common dolphin (Delphinus delphis delphis) stranded alive on the coast of southern California and subsequently died. Gross necropsy revealed multifocal cortical pallor within the reniculi of the kidney, and lymphoplasmacytic tubulointerstitial nephritis was observed histologically. Immunohistochemistry confirmed Leptospira infection, and PCR followed by lfb1 gene amplicon sequencing suggested that the infecting organism was L.kirschneri. Leptospira DNA capture and enrichment allowed for whole-genome sequencing to be conducted. Phylogenetic analyses confirmed the causative agent was a previously undescribed, divergent lineage of L.kirschneri. CONCLUSIONS: We report the first detection of pathogenic Leptospira in a short-beaked common dolphin, and the first detection in any cetacean in the northeastern Pacific Ocean. Renal lesions were consistent with leptospirosis in other host species, including marine mammals, and were the most significant lesions detected overall, suggesting leptospirosis as the likely cause of death. We identified the cause of the infection as L.kirschneri, a species detected only once before in a marine mammal - a northern elephant seal (Mirounga angustirostris) of the northeastern Pacific. These findings raise questions about the mechanism of transmission, given the obligate marine lifestyle of cetaceans (in contrast to pinnipeds, which spend time on land) and the commonly accepted view that Leptospira are quickly killed by salt water. They also raise important questions regarding the source of infection, and whether it arose from transmission among marine mammals or from terrestrial-to-marine spillover. Moving forward, surveillance and sampling must be expanded to better understand the extent to which Leptospira infections occur in the marine ecosystem and possible epidemiological linkages between and among marine and terrestrial host species. Generating Leptospira genomes from different host species will yield crucial information about possible transmission links, and our study highlights the power of new techniques such as DNA enrichment to illuminate the complex ecology of this important zoonotic pathogen.
Assuntos
Leptospira , Leptospirose , Animais , Leptospira/isolamento & purificação , Leptospira/genética , Leptospira/classificação , Leptospirose/veterinária , Leptospirose/microbiologia , Leptospirose/epidemiologia , California/epidemiologia , Feminino , Filogenia , Golfinhos Comuns/microbiologiaRESUMO
BACKGROUND: Human fishing activities have significantly affect environmental concern for marine ecosystems, conservation of marine mammals, and human health. Coastal cetaceans are highly vulnerable to ingestion of fishing gear, bycatching, or entanglement, all of which can be fatal for these animals. In particular, certain coastal dolphins and porpoises are heavily impacted by fishing gear such as angling gear or stownet, as their food often overlap with the target fish species of human fisheries. CASE PRESENTATION: This study presents a case of an Indo-Pacific finless porpoise (Neophocaena phocaenoides) beached on the coast of Jeju Island, Republic of Korea, with ingestion of fishing gear and severe Anisakis infection. Although this species inhabits waters ranging from the Persian Gulf to Taiwan, several stranded carcasses have been reported on Jeju Island in recent years. Post-mortem computed tomography revealed a bundle of four fishing hooks in the forestomach, along with nylon lines and steel lines with connectors, which were assumed to be angling gear for Jeju hairtail (Trichiurus lepturus). Further necroscopic investigation revealed that the forestomach contained a large number of Anisakis spp. (Nematoda: Anisakidae). Histological examination revealed a thickened forestomach wall with pinpoint and volcanic ulcerations, a thickened layer of stratified squamous epithelium, and infiltrated stroma in the squamous epithelium. CONCLUSIONS: This study emphasizes the urgent need to address the impact of fishing activities on marine mammals, marine litter pollution, and the bycatch problem in Korean seawater. In addition, the occurrence of N. phocaenoides in seawater around Jeju Island should be raised in future geographical ecology or veterinary pathology studies and when its distribution is updated.
Assuntos
Anisaquíase , Anisakis , Toninhas , Animais , Toninhas/parasitologia , República da Coreia , Anisaquíase/veterinária , Anisaquíase/parasitologia , Anisakis/isolamento & purificação , Pesqueiros , Tomografia Computadorizada por Raios X/veterinária , Masculino , Imageamento post mortemRESUMO
Neurobrucellosis is a shared condition of cetaceans and humans. However, the pathogenesis and immune response in cetacean neurobrucellosis has not been extensively studied. In this multicentric investigation, 21 striped dolphin (Stenella coeruleoalba) neurobrucellosis (Brucella ceti) cases diagnosed over a 10-year period (2012-2022) were retrospectively evaluated. For each case, morphological changes were assessed by evaluating 21 histological parameters. Furthermore, the immunohistochemical expression of Brucella antigen, glial fibrillary acid protein (GFAP), and a selection of inflammatory cell (IBA-1, CD3, and CD20) and cytokine (tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], interleukin [IL]-1ß, IL-2, and IL-6) markers were investigated. Inflammation of the leptomeninges, ependyma, and/or choroid plexus was lymphohistiocytic, containing macrophages/microglia (IBA-1+), T-cells (CD3+), and B-cells (CD20+) in equal proportion. B-cells occasionally formed tertiary follicles. GFAP expression showed astrocytosis in most cases. Expression of TNF-α, IFN-γ, and IL-2 indicated an intense proinflammatory response, stimulating both macrophages and T-cells. Our results showed that the inflammation and neuroinflammation in neurobrucellosis of striped dolphins mimic human neurobrucellosis and in vitro and in vivo studies in laboratory animals. Cetacean disease surveillance can be exploited to expand the knowledge of the pathogenesis and immunology of infectious diseases, particularly brucellosis, under a One Health approach.
RESUMO
Cetaceans harbor multiple epibionts on their external surface, and these attach to particular microhabitats. Understanding what drives the selection of attachment sites is relevant for refining the use of epibionts as indicators of their hosts. We report on about 100 females of the mesoparasitic copepod Pennella balaenoptera attached to a dead Cuvier's beaked whale Ziphius cavirostris stranded in Tunisia (western Mediterranean); the first report of P. balaenoptera in this country. The copepods were exclusively attached to numerous incisive, likely anthropogenic, wounds found on the host's skin. This finding suggests that newly recruited females may actively seek skin areas where physical penetration is facilitated; a factor that may help explain patterns of microhabitat selection by Pennella spp., and perhaps other pennellids, on their hosts. The estimated age of parasitization by P. balaenoptera (supported by age estimations of the co-occurring epibiotic barnacle Conchoderma virgatum) also suggests that the cetacean host likely survived these injuries, at least initially, and the presumed cause of death was starvation due to entanglement in a fishing net.
Assuntos
Copépodes , Pele , Animais , Copépodes/fisiologia , Feminino , Pele/parasitologia , Interações Hospedeiro-ParasitaRESUMO
Infections by Erysipelothrix rhusiopathiae occur in domestic animals and cause the disease known as 'erysipelas'. The ubiquity of Erysipelothrix spp. makes infection possible in a wide range of vertebrates and invertebrates. Cetaceans are highly susceptible to erysipelas, especially those under human care. The number of cases documented in wild cetaceans is low, the pathogenesis is incompletely understood, and the full spectrum of lesions is not well defined. The possible serotypes and species of the genus that can cause disease are unknown. In October 2022, a common bottlenose dolphin Tursiops truncatus stranded in Vilassar de Mar (Catalonia) showing skin lesions consistent with 'diamond skin disease', a characteristic lesion of erysipelas shared by swine and cetaceans. Necropsy was performed following standardized procedures, and multiple samples were taken for histopathology and bacteriology. Erysipelothrix sp. grew in pure culture in many tissue samples. Genetic characterization by multi-locus sequence analysis identified the species as E. rhusiopathiae. Histologically, the main lesions were an intense suppurative vasculitis of leptomeningeal arteries and veins with abundant intramural Gram-positive bacilli and meningeal hemorrhages. Meningeal lesions were considered the cause of death. The affected skin showed moderate suppurative dermatitis. Herein we document a case of erysipelas in a Mediterranean common bottlenose dolphin with unusual lesions in the leptomeningeal vessels and marked skin tropism. To our knowledge, this is the first case of severe brain involvement in erysipelas in a cetacean. We also provide a review of available cases in wild cetaceans, to highlight the characteristics of the disease and improve future diagnosis.
Assuntos
Golfinho Nariz-de-Garrafa , Erisipela , Infecções por Erysipelothrix , Erysipelothrix , Animais , Encéfalo , Erisipela/veterinária , Infecções por Erysipelothrix/microbiologiaRESUMO
Cetacean poxvirus (CePV) is the causative agent of tattoo skin disease (TSD) in dolphins, porpoises and whales, a condition characterized by pinhole, ring-like lesions or generalized tattoo-like skin lesions. This study genetically characterized cetacean poxviruses from stranded animals along mainland Portugal. Samples from skin lesions compatible with TSD were obtained from 4 odontocete species (Delphinus delphis, Stenella coeruleoalba, Phocoena phocoena, and Tursiops truncatus) and analyzed using a conventional PCR assay targeting the DNA polymerase gene partially. Among the positive samples (n = 29, 65.9%), a larger DNA polymerase gene fragment was obtained, allowing a robust phylogenetic analysis. Nineteen samples (43.2%) were successfully amplified and sequenced using Sanger sequencing. By combining 11 of these sequences with those from public databases, a maximum likelihood phylogenetic tree was constructed, revealing high heterogeneity within the group. These findings contribute to a better understanding of the genetic diversity, epidemiology, phylogenetics, and evolution of CePV.
Assuntos
Cetáceos , Filogenia , Infecções por Poxviridae , Poxviridae , Animais , Portugal/epidemiologia , Poxviridae/genética , Poxviridae/isolamento & purificação , Poxviridae/classificação , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Infecções por Poxviridae/epidemiologia , Cetáceos/virologiaRESUMO
The assessment of free-ranging cetacean health through the study of skin conditions using photographs has gained prominence in recent years. However, little attention has been given to the relationships between cetacean skin conditions, species, and body condition. To explore this relationship among baleen whale species along the northwestern coast of Spain, we employed a non-invasive method involving photograph analysis. In this study, we examined skin conditions (including injuries, epizoites and ectoparasites, pigmentation disorders, skin lesions, and anatomical malformations) and body condition (overall physical contours and form, as an indicator of nutritional status and health) in 3 species of whales (blue, fin, and minke whales). This methodology facilitated the identification of 29 subcategories of distinct skin conditions and an assessment of body condition over a 5 yr period (2017 to 2021). In our study, we present evidence linking hypopigmentation, protruding pieces of tissue, and tattoo-like lesions to 'Poor' body condition in the 3 baleen whale species. Fin whales exhibited a higher susceptibility to mottling (prevalence = 17.7%), while blue whales were more prone to starbursts (prevalence = 90.5%). Additionally, we found a significant relationship between skin condition diversity and individual body condition. Our findings contribute valuable information to the broader understanding of the health status of baleen whales. Further investigations are necessary to delve into the etiology of the documented skin conditions and their potential implications for individual survival. This study serves as a foundation for ongoing research aimed at advancing our comprehension of these findings.
Assuntos
Baleias , Animais , Pele , Especificidade da Espécie , Dermatopatias/veterinária , Dermatopatias/epidemiologia , Dermatopatias/patologia , Espanha/epidemiologiaRESUMO
Cetacean morbillivirus (CeMV) causes illness and death in cetaceans worldwide; the CeMV strains circulating in the Southern Hemisphere are poorly known. We detected a pilot whale CeMV strain in 3 short-finned pilot whales (Globicephala macrorhynchus) stranded in Brazil during July-October 2020. Our results confirm this virus circulates in this species.
Assuntos
Infecções por Morbillivirus , Morbillivirus , Baleias Piloto , Animais , Infecções por Morbillivirus/diagnóstico , Infecções por Morbillivirus/veterinária , Brasil/epidemiologia , Morbillivirus/genéticaRESUMO
Alzheimer's disease (AD) is the most common neurodegenerative disease and the primary cause of disability and dependency among elderly humans worldwide. AD is thought to be a disease unique to humans although several other animals develop some aspects of AD-like pathology. Odontocetes (toothed whales) share traits with humans that suggest they may be susceptible to AD. The brains of 22 stranded odontocetes of five different species were examined using immunohistochemistry to investigate the presence or absence of neuropathological hallmarks of AD: amyloid-beta plaques, phospho-tau accumulation and gliosis. Immunohistochemistry revealed that all aged animals accumulated amyloid plaque pathology. In three animals of three different species of odontocete, there was co-occurrence of amyloid-beta plaques, intraneuronal accumulation of hyperphosphorylated tau, neuropil threads and neuritic plaques. One animal showed well-developed neuropil threads, phospho-tau accumulation and neuritic plaques, but no amyloid plaques. Microglia and astrocytes were present as expected in all brain samples examined, but we observed differences in cell morphology and numbers between individual animals. The simultaneous occurrence of amyloid-beta plaques and hyperphosphorylated tau pathology in the brains of odontocetes shows that these three species develop AD-like neuropathology spontaneously. The significance of this pathology with respect to the health and, ultimately, death of the animals remains to be determined. However, it may contribute to the cause(s) of unexplained live-stranding in some odontocete species and supports the 'sick-leader' theory whereby healthy conspecifics in a pod mass strand due to high social cohesion.