Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Hum Mol Genet ; 33(10): 860-871, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38324746

RESUMO

Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila , Complexo I de Transporte de Elétrons , Complexo I de Transporte de Elétrons/deficiência , Mitocôndrias , Doenças Mitocondriais , Proteostase , Animais , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Autofagia/genética , Estresse Oxidativo/genética , Drosophila melanogaster/genética , Mutação , Lisossomos/metabolismo , Lisossomos/genética , Drosophila/genética , Drosophila/metabolismo , Transdução de Sinais
2.
Ultrasound Obstet Gynecol ; 63(3): 392-398, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718619

RESUMO

OBJECTIVE: Mitochondrial complex-I deficiency, nuclear type 16, is a rare autosomal recessive disorder caused by biallelic pathogenic variants in NDUFAF5 (C20orf7) (OMIM 618238). The aim of this study was to describe a severe early prenatal manifestation of this disorder, which was previously considered to occur only postnatally. METHODS: This was a multicenter retrospective case series including five fetuses from three non-related families, which shared common sonographic abnormalities, including brain cysts, corpus callosal malformations, non-immune hydrops fetalis and growth restriction. Genetic evaluation included chromosomal microarray analysis and exome sequencing. Two fetuses from the same family were also available for pathology examination, including electron microscopy. RESULTS: Chromosomal microarray analysis revealed no chromosomal abnormality in any of the tested cases. Trio exome sequencing demonstrated that three affected fetuses from three unrelated families were compound heterozygous or homozygous for likely pathogenic variants in NDUFAF5. No other causative variants were detected. The association between NDUFAF5 variants and fetal malformations was further confirmed by segregation analysis. Histological evaluation of fetal tissues and electron microscopy of the skeletal muscle, liver, proximal tubules and heart demonstrated changes that resembled postmortem findings in patients with mitochondrial depletion disorders as well as previously undescribed findings. CONCLUSIONS: Mitochondrial complex-I deficiency and specifically biallelic mutations in NDUFAF5 have a role in abnormal fetal development, presenting with severe congenital malformations. Mitochondrial complex-I disorders should be considered in the differential diagnosis of corpus callosal malformations and brain cysts, especially when associated with extracranial abnormalities, such as fetal growth restriction and non-immune hydrops fetalis. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Cistos , Complexo I de Transporte de Elétrons/deficiência , Hidropisia Fetal , Doenças Mitocondriais , Feminino , Gravidez , Humanos , Estudos Retrospectivos , Fenótipo , Agenesia do Corpo Caloso , Metiltransferases , Proteínas Mitocondriais/genética
3.
Am J Hum Genet ; 106(1): 92-101, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866046

RESUMO

Leigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date. Candidate genes are still emerging, being identified when "omics" tools (genomics, proteomics, and transcriptomics) are applied to manipulated cell lines and cohorts of clinically characterized individuals who lack a genetic diagnosis. NDUFAF8 is one such protein; it has been found to interact with the well-characterized complex I (CI) assembly factor NDUFAF5 in a large-scale protein-protein interaction screen. Diagnostic next-generation sequencing has identified three unrelated pediatric subjects, each with a clinical diagnosis of Leigh syndrome, who harbor bi-allelic pathogenic variants in NDUFAF8. These variants include a recurrent splicing variant that was initially overlooked due to its deep-intronic location. Subject fibroblasts were found to express a complex I deficiency, and lentiviral transduction with wild-type NDUFAF8-cDNA ameliorated both the assembly defect and the biochemical deficiency. Complexome profiling of subject fibroblasts demonstrated a complex I assembly defect, and the stalled assembly intermediates corroborate the role of NDUFAF8 in early complex I assembly. This report serves to expand the genetic heterogeneity associated with Leigh syndrome and to validate the clinical utility of orphan protein characterization. We also highlight the importance of evaluating intronic sequence when a single, definitively pathogenic variant is identified during diagnostic testing.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Fibroblastos/patologia , Doença de Leigh/etiologia , Doenças Mitocondriais/etiologia , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Alelos , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/patologia , Linhagem , Fenótipo
4.
Mov Disord ; 38(12): 2217-2229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752895

RESUMO

BACKGROUND: Rare mutations in NADH:ubiquinone oxidoreductase complex assembly factor 5 (NDUFAF5) are linked to Leigh syndrome. OBJECTIVE: We aimed to describe clinical characteristics and functional findings in a patient cohort with NDUFAF5 mutations. METHODS: Patients with biallelic NDUFAF5 mutations were recruited from multi-centers in Taiwan. Clinical, laboratory, radiological, and follow-up features were recorded and mitochondrial assays were performed in patients' skin fibroblasts. RESULTS: Nine patients from seven unrelated pedigrees were enrolled, eight homozygous for c.836 T > G (p.Met279Arg) in NDUFAF5 and one compound heterozygous for p.Met279Arg. Onset age had a bimodal distribution. The early-onset group (age <3 years) presented with psychomotor delay, seizure, respiratory failure, and hyponatremia. The late-onset group (age ≥5 years) presented with normal development, but slowly progressive dystonia. Combing 25 previously described patients, the p.Met279Arg variant was exclusively identified in Chinese ancestry. Compared with other groups, patients with late-onset homozygous p.Met279Arg were older at onset (P = 0.008), had less developmental delay (P = 0.01), less hyponatremia (P = 0.01), and better prognosis with preserved ambulatory function into early adulthood (P = 0.01). Bilateral basal ganglia necrosis was a common radiological feature, but brainstem and spinal cord involvement was more common with early-onset patients (P = 0.02). A modifier gene analysis showed higher concomitant mutation burden in early-versus late-onset p.Met279Arg homozygous cases (P = 0.04), consistent with more impaired mitochondrial function in fibroblasts from an early-onset case than a late-onset patient. CONCLUSIONS: The p.Met279Arg variant is a common mutation in our population with phenotypic heterogeneity and divergent prognosis based on age at onset. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Hiponatremia , Doença de Leigh , Transtornos dos Movimentos , Pré-Escolar , Humanos , Distúrbios Distônicos/complicações , Hiponatremia/complicações , Doença de Leigh/genética , Doença de Leigh/complicações , Metiltransferases/genética , Proteínas Mitocondriais/genética , Transtornos dos Movimentos/complicações , Mutação/genética , Criança , Adulto Jovem
5.
Am J Med Genet A ; 191(6): 1599-1606, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896486

RESUMO

Mitochondrial respiratory chain disorders (MRC) are amongst the most common group of inborn errors of metabolism. MRC, of which complex I deficiency accounts for approximately a quarter, are very diverse, causing a wide range of clinical problems and can be difficult to diagnose. We report an illustrative MRC case whose diagnosis was elusive. Clinical signs included failure to thrive caused by recurrent vomiting, hypotonia and progressive loss of motor milestones. Initial brain imaging suggested Leigh syndrome but without expected diffusion restriction. Muscle respiratory chain enzymology was unremarkable. Whole-genome sequencing identified a maternally inherited NDUFV1 missense variant [NM_007103.4 (NDUFV1):c.1157G > A; p.(Arg386His)] and a paternally inherited synonymous variant [NM_007103.4 (NDUFV1):c.1080G > A; (p.Ser360=)]. RNA sequencing demonstrated aberrant splicing. This case emphasizes the diagnostic odyssey of a patient in whom a confirmed diagnosis was elusive because of atypical features and normal muscle respiratory chain enzyme (RCE) activities, along with a synonymous variant, which are often filtered out from genomic analyses. It also illustrates the following points: (1) complete resolution of magnetic resonance imaging changes may be part of the picture in mitochondrial disease; (2) analysis for synonymous variants is important for undiagnosed patients; and (3) RNA-seq is a powerful tool to demonstrate pathogenicity of putative splicing variants.


Assuntos
Imageamento por Ressonância Magnética , Músculos , Humanos , RNA-Seq , Sequenciamento Completo do Genoma , Encéfalo , Complexo I de Transporte de Elétrons/genética
6.
Hum Mutat ; 42(4): 378-384, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502047

RESUMO

Mutations in structural subunits and assembly factors of complex I of the oxidative phosphorylation system constitute the most common cause of mitochondrial respiratory chain defects. Such mutations can present a wide range of clinical manifestations, varying from mild deficiencies to severe, lethal disorders. We describe a patient presenting intrauterine growth restriction and anemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Whole genome sequencing revealed an intronic biallelic mutation in the NDUFB7 gene (c.113-10C>G) and splicing pattern alterations in NDUFB7 messenger RNA were confirmed by RNA Sequencing. The detected variant resulted in a significant reduction of the NDUFB7 protein and reduced complex I activity. Complementation studies with expression of wild-type NDUFB7 in patient fibroblasts normalized complex I function. Here we report a case with a primary complex I defect due to a homozygous mutation in an intron region of the NDUFB7 gene.


Assuntos
Acidose Láctica , Cardiomiopatia Hipertrófica , Doenças Mitocondriais , NADH NADPH Oxirredutases/genética , Acidose Láctica/genética , Cardiomiopatia Hipertrófica/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Doenças Mitocondriais/genética , Mutação
7.
Metabolomics ; 17(12): 101, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792662

RESUMO

INTRODUCTION: The value of metabolomics in multi-systemic mitochondrial disease research has been increasingly recognized, with the ability to investigate a variety of biofluids and tissues considered a particular advantage. Although minimally invasive biofluids are the generally favored sample type, it remains unknown whether systemic metabolomes provide a clear reflection of tissue-specific metabolic alterations. OBJECTIVES: Here we cross-compare urine and tissue-specific metabolomes in the Ndufs4 knockout mouse model of Leigh syndrome-a complex neurometabolic MD defined by progressive focal lesions in specific brain regions-to identify and evaluate the extent of common and unique metabolic alterations on a systemic and brain regional level. METHODS: Untargeted and semi-targeted multi-platform metabolomics were performed on urine, four brain regions, and two muscle types of Ndufs4 KO (n≥19) vs wildtype (n≥20) mice. RESULTS: Widespread alterations were evident in alanine, aspartate, glutamate, and arginine metabolism in Ndufs4 KO mice; while brain-region specific metabolic signatures include the accumulation of branched-chain amino acids, proline, and glycolytic intermediates. Furthermore, we describe a systemic dysregulation in one-carbon metabolism and the tricarboxylic acid cycle, which was not clearly reflected in the Ndufs4 KO brain. CONCLUSION: Our results confirm the value of urinary metabolomics when evaluating MD-associated metabolites, while cautioning against mechanistic studies relying solely on systemic biofluids.


Assuntos
Doença de Leigh , Animais , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/metabolismo , Metaboloma , Metabolômica , Camundongos , Camundongos Knockout
8.
Mol Genet Metab ; 129(3): 236-242, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917109

RESUMO

Disorders of the white matter are genetically very heterogeneous including several genes involved in mitochondrial bioenergetics. Diagnosis of the underlying cause is aided by pattern recognition on neuroimaging and by next-generation sequencing. Recently, genetic changes in the complex I assembly factor NUBPL have been characterized by a consistent recognizable pattern of leukoencephalopathy affecting deep white matter including the corpus callosum and cerebellum. Here, we report twin boys with biallelic variants in NUBPL, an unreported c.351 G > A; p.(Met117Ile) and a previously reported pathological variant c. 693 + 1 G > A. Brain magnetic resonance imaging showed abnormal T2 hyperintense signal involving the periventricular white matter, external capsule, corpus callosum, and, prominently, the bilateral thalami. The neuroimaging pattern evolved over 18 months with marked diffuse white matter signal abnormality, volume loss, and new areas of signal abnormality in the cerebellar folia and vermis. Magnetic resonance spectroscopy showed elevated lactate. Functional studies in cultured fibroblasts confirmed pathogenicity of the genetic variants. Complex I activity of the respiratory chain was deficient spectrophotometrically and on blue native gel with in-gel activity staining. There was absent assembly and loss of proteins of the matrix arm of complex I when traced with an antibody to NDUFS2, and incomplete assembly of the membrane arm when traced with an NDUFB6 antibody. There was decreased NUBPL protein on Western blot in patient fibroblasts compared to controls. Compromised NUBPL activity impairs assembly of the matrix arm of complex I and produces a severe, rapidly-progressive leukoencephalopathy with thalamic involvement on MRI, further expanding the neuroimaging phenotype.


Assuntos
Doenças em Gêmeos/genética , Complexo I de Transporte de Elétrons/metabolismo , Leucoencefalopatias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Tálamo/diagnóstico por imagem , Linhagem Celular , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Doenças em Gêmeos/diagnóstico por imagem , Doenças em Gêmeos/metabolismo , Doenças em Gêmeos/fisiopatologia , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Cápsula Externa/diagnóstico por imagem , Cápsula Externa/patologia , Olho/fisiopatologia , Fibroblastos/metabolismo , Humanos , Lactente , Ácido Láctico/metabolismo , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/metabolismo , Leucoencefalopatias/fisiopatologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Mutação , NADH Desidrogenase/metabolismo , Gêmeos Monozigóticos/genética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Sequenciamento do Exoma
9.
Mol Genet Metab ; 131(3): 341-348, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33093004

RESUMO

Uniparental disomy (UPD) is an underestimated cause of autosomal recessive disorders. In this study, we aim to raise awareness about the possibility of UPD in mitochondrial disorders - where it is a hardly described event -, by functionally characterizing a novel variant in a structural subunit of complex I (CI) of the mitochondrial oxidative phosphorylation system. Using next-generation sequencing, we identified a new intronic homozygous c.350 + 5G > A variant in the NDUFS4 gene in a one-year-old girl (being alive at the age of 7) belonging to a non-consanguineous family presenting with encephalopathy, psychomotor delay, lactic acidosis and a single CI deficiency, a less severe phenotype than those previously reported in most NDUFS4 patients. One parent lacked the variant, and microsatellite genotyping showed complete paternal uniparental isodisomy of the non-imprinted chromosome 5. We demonstrated in patient's skeletal muscle and fibroblasts splicing abnormalities, low expression of NDUFS4, undetectable NDUFS4 protein, defects in cellular respiration (decreased oxygen consumption and ATP production), and impaired assembly or stability of mitochondrial supercomplexes containing CI. Our findings support that c.350 + 5G > A variant is pathogenic, and reinforce that UPD, although rare, should be considered as a possible cause of mitochondrial diseases in order to provide accurate genetic counselling.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Doenças Mitocondriais/genética , Dissomia Uniparental/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mutação/genética , Splicing de RNA/genética , Dissomia Uniparental/patologia
10.
Clin Genet ; 98(2): 155-165, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385911

RESUMO

Mitochondrial complex I deficiency is caused by pathogenic variants in mitochondrial and nuclear genes associated with complex I structure and assembly. We report the case of a patient with NDUFA8-related mitochondrial disease. The patient presented with developmental delay, microcephaly, and epilepsy. His fibroblasts showed apparent biochemical defects in mitochondrial complex I. Whole-exome sequencing revealed that the patient carried a homozygous variant in NDUFA8. His fibroblasts showed a reduction in the protein expression level of not only NDUFA8, but also the other complex I subunits, consistent with assembly defects. The enzyme activity of complex I and oxygen consumption rate were restored by reintroducing wild-typeNDUFA8 cDNA into patient fibroblasts. The functional properties of the variant in NDUFA8 were also investigated using NDUFA8 knockout cells expressing wild-type or mutated NDUFA8 cDNA. These experiments further supported the pathogenicity of the variant in complex I assembly. This is the first report describing that the loss of NDUFA8, which has not previously been associated with mitochondrial disease, causes severe defect in the assembly of mitochondrial complex I, leading to progressive neurological and developmental abnormalities.


Assuntos
Deficiências do Desenvolvimento/genética , Complexo I de Transporte de Elétrons/deficiência , Microcefalia/genética , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/fisiopatologia , Complexo I de Transporte de Elétrons/genética , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/fisiopatologia , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/fisiopatologia , Adulto Jovem
11.
Clin Chem Lab Med ; 58(11): 1809-1817, 2020 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432562

RESUMO

Objectives Leigh syndrome (LS) is one of the most common mitochondrial diseases and has variable clinical symptoms. However, the genetic variant spectrum of this disease is incomplete. Methods Next-generation sequencing (NGS) was used to identify the m.14430A > G (p.W82R) variant in a patient with LS. The pathogenesis of this novel complex I (CI) variant was verified by determining the mitochondrial respiration, assembly of CI, ATP, MMP and lactate production, and cell growth rate in cybrids with and without this variant. Results A novel m.14430A > G (p.W82R) variant in the NADH dehydrogenase 6 (ND6) gene was identified in the patient; the mutant loads of m.14430A > G (p.W82R) in the patient were much higher than those in his mother. Although the transmitochondrial cybrid-based study showed that mitochondrial CI assembly remains unaffected in cells with the m.14430G variant, control cells had significantly higher endogenous and CI-dependent mitochondrial respiration than mutant cells. Accordingly, mutant cells had a lower ATP, MMP and higher extracellular lactate production than control cells. Notably, mutant cells had impaired growth in a galactose-containing medium when compared to wild-type cells. Conclusions A novel m.14430A > G (p.W82R) variant in the ND6 gene was identified from a patient suspected to have LS, and this variant impaired mitochondrial respiration by decreasing the activity of mitochondrial CI.


Assuntos
Doença de Leigh/genética , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Linhagem Celular Tumoral , Pré-Escolar , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/enzimologia , Masculino , Mutação de Sentido Incorreto
12.
Mol Genet Metab ; 126(3): 250-258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30642748

RESUMO

AIM: To perform a deep phenotype characterisation in a pedigree of 3 siblings with Leigh syndrome and compound heterozygous NDUFAF6 mutations. METHOD: A multi-gene panel of childhood-onset basal ganglia neurodegeneration inherited conditions was analysed followed by functional studies in fibroblasts. RESULTS: Three siblings developed gait dystonia in infancy followed by rapid progression to generalised dystonia and psychomotor regression. Brain magnetic resonance showed symmetric and bilateral cytotoxic lesions in the putamen and proliferation of the lenticular-striate arteries, latter spreading to the caudate and progressing to cavitation and volume loss. We identified a frameshift novel change (c.554_558delTTCTT; p.Tyr187AsnfsTer65) and a pathogenic missense change (c.371T>C; p.Ile124Thr) in the NDUFAF6 gene, which segregated with an autosomal recessive inheritance within the family. Patient mutations were associated with the absence of the NDUFAF6 protein and reduced activity and assembly of mature complex I in fibroblasts. By functional complementation assay, the mutant phenotype was rescued by the canonical version of the NDUFAF6. A literature review of 14 NDUFAF6 patients showed a consistent phenotype of an early childhood insidious onset neurological regression with prominent dystonia associated with basal ganglia degeneration and long survival. INTERPRETATION: NDUFAF6-related Leigh syndrome is a relevant cause of childhood onset dystonia and isolated bilateral striatal necrosis. By genetic complementation, we could demonstrate the pathogenicity of novel genetic variants in NDUFAF6.


Assuntos
Distúrbios Distônicos/genética , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/genética , Proteínas Mitocondriais/genética , Degeneração Estriatonigral/congênito , Biópsia , Criança , Estudos de Coortes , Feminino , Fibroblastos , Expressão Gênica , Variação Genética , Humanos , Doença de Leigh/complicações , Masculino , Músculos/patologia , Mutação , Linhagem , Irmãos , Degeneração Estriatonigral/genética
13.
Clin Genet ; 93(2): 396-400, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857146

RESUMO

Deficiencies of mitochondrial respiratory chain complex I frequently result in leukoencephalopathy in young patients, and different mutations in the genes encoding its subunits are still being uncovered. We report 2 patients with cystic leukoencephalopathy and complex I deficiency with recessive mutations in NDUFA2, an accessory subunit of complex I. The first patient was initially diagnosed with a primary systemic carnitine deficiency associated with a homozygous variant in SLC22A5, but also exhibited developmental regression and cystic leukoencephalopathy, and an additional diagnosis of complex I deficiency was suspected. Biochemical analysis confirmed a complex I deficiency, and whole-exome sequencing revealed a homozygous mutation in NDUFA2 (c.134A>C, p.Lys45Thr). Review of a biorepository of patients with unsolved genetic leukoencephalopathies who underwent whole-exome or genome sequencing allowed us to identify a second patient with compound heterozygous mutations in NDUFA2 (c.134A>C, p.Lys45Thr; c.225del, p.Asn76Metfs*4). Only 1 other patient with mutations in NDUFA2 and a different phenotype (Leigh syndrome) has previously been reported. This is the first report of cystic leukoencephalopathy caused by mutations in NDUFA2.


Assuntos
Sequenciamento do Exoma , Leucoencefalopatias/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Doença de Leigh/genética , Doença de Leigh/fisiopatologia , Leucoencefalopatias/fisiopatologia , Masculino , Mitocôndrias/patologia , Mutação , Membro 5 da Família 22 de Carreadores de Soluto/genética
14.
Biochem Biophys Res Commun ; 491(1): 85-90, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698145

RESUMO

Pathogenic mtDNA mutations associated with alterations of respiratory complex I, mitochondrial proliferation (oncocytic-like phenotype) and increase in antioxidant response were previously reported in type I endometrial carcinoma (EC). To evaluate whether in the presence of pathogenic mtDNA mutations other mitochondrial adaptive processes are triggered by cancer cells, the expression level of proteins involved in mitochondrial dynamics, mitophagy, proteolysis and apoptosis were evaluated in type I ECs harboring pathogenic mtDNA mutations and complex I deficiency. An increase in the fission protein Drp1, in the mitophagy protein BNIP3, in the mitochondrial protease CLPP, in the antioxidant and anti-apoptotic protein ALR and in Bcl-2 as well as a decrease in the fusion protein Mfn2 were found in cancer compared to matched non malignant tissue. Moreover, the level of these proteins was measured in type I EC, in hyperplastic (the premalignant form) and in non malignant tissues to verify whether the altered expression of these proteins is a common feature of endometrial cancer and of hyperplastic tissue. This analysis confirmed in type I EC samples, but not in hyperplasia, an alteration of the expression level of these proteins. These results suggest that in this cancer mitochondrial fission, antioxidant and anti-apoptotic response may be activated, as well as the discharge of damaged mitochondrial proteins as adaptation processes to mitochondrial dysfunction.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Mitocôndrias/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Proteínas Mitocondriais , Proteínas de Neoplasias , Proteólise , Células Tumorais Cultivadas
15.
Mol Genet Metab ; 121(3): 224-226, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28529009

RESUMO

Patients carrying Acyl-CoA dehydrogenase 9 (ACAD9) mutations reported to date mainly present with severe hypertrophic cardiomyopathy and isolated complex I (CI) dysfunction. Here we report a novel ACAD9 mutation in a young girl presenting with severe hypertrophic cardiomyopathy, isolated CI deficiency and interestingly multiple respiratory chain complexes assembly defects. We show that ACAD9 analysis has to be performed in first intention in patients presenting with cardiac hypertrophy even in the presence of multiple assembly defects.


Assuntos
Acil-CoA Desidrogenases/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Mutação , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenases/sangue , Criança , Transporte de Elétrons , Complexo I de Transporte de Elétrons/sangue , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Lactente
16.
Muscle Nerve ; 55(6): 919-922, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27438479

RESUMO

INTRODUCTION: Acyl-coenzyme A dehydrogenase 9 (ACAD9) has a role in mitochondrial complex I (CI) assembly. Only a few patients who carry ACAD9 mutations have been reported. They mainly present with severe hypertrophic cardiomyopathy, although a minority have only mild isolated myopathy. Although the secondary factors influencing disease severity have not been elucidated, conservation of CI assembly and residual enzymatic activity have been suggested as explanations for the mild phenotypes associated with ACAD9 mutations. METHODS: We report a novel homozygous ACAD9 mutation (c.1240C>T; p.Arg414Cys) in a 34-year-old woman who presented with non-progressive myopathy. RESULTS: We show that this ACAD9 mutation led to a severe defect in CI assembly in the patient's muscle. Furthermore, the impact of CI deficiency is confirmed by accumulation of mitochondrial DNA deletions. CONCLUSION: Our data suggest that a major defect of CI assembly is not responsible for a severe phenotype. Muscle Nerve 55: 919-922, 2017.


Assuntos
Acil-CoA Desidrogenases/metabolismo , Acil-CoA Desidrogenases/genética , Adulto , Consanguinidade , Análise Mutacional de DNA , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética
17.
J Med Genet ; 53(9): 634-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27091925

RESUMO

BACKGROUND: Isolated Complex I deficiency is the most common paediatric mitochondrial disease presentation, associated with poor prognosis and high mortality. Complex I comprises 44 structural subunits with at least 10 ancillary proteins; mutations in 29 of these have so far been associated with mitochondrial disease but there are limited genotype-phenotype correlations to guide clinicians to the correct genetic diagnosis. METHODS: Patients were analysed by whole-exome sequencing, targeted capture or candidate gene sequencing. Clinical phenotyping of affected individuals was performed. RESULTS: We identified a cohort of 10 patients from 8 families (7 families are of unrelated Irish ancestry) all of whom have short stature (<9th centile) and similar facial features including a prominent forehead, smooth philtrum and deep-set eyes associated with a recurrent homozygous c.64T>C, p.Trp22Arg NDUFB3 variant. Two sibs presented with primary short stature without obvious metabolic dysfunction. Analysis of skeletal muscle from three patients confirmed a defect in Complex I assembly. CONCLUSIONS: Our report highlights that the long-term prognosis related to the p.Trp22Arg NDUFB3 mutation can be good, even for some patients presenting in acute metabolic crisis with evidence of an isolated Complex I deficiency in muscle. Recognition of the distinctive facial features-particularly when associated with markers of mitochondrial dysfunction and/or Irish ancestry-should suggest screening for the p.Trp22Arg NDUFB3 mutation to establish a genetic diagnosis, circumventing the requirement of muscle biopsy to direct genetic investigations.


Assuntos
Nanismo/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação/genética , Criança , Pré-Escolar , Exoma/genética , Fácies , Feminino , Estudos de Associação Genética/métodos , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Fenótipo
18.
Mol Genet Metab ; 118(3): 185-189, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27233227

RESUMO

Acyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders. ACAD9 mutation is suspected in cases of elevated lactic acid levels combined with complex I deficiency, and confirmed by ACAD9 gene analysis. At least 18 ACAD9-mutated patients have previously been reported, usually displaying severe cardiac involvement. We retrospectively studied nine additional patients from three unrelated families with a wide spectrum of cardiac involvement between the families as well as the patients from the same families. All patients exhibited elevated lactate levels. Deleterious ACAD9 mutations were identified in all patients except one for whom it was not possible to recover DNA. To our knowledge, this is one of the first reports on isolated mild ventricular hypertrophy due to ACAD9 mutation in a family with moderate symptoms during adolescence. This report also confirms that dilated cardiomyopathy may occur in conjunction with ACAD9 mutation and that some patients may respond clinically to riboflavin treatment. Of note, several patients suffered from patent ductus arteriosus (PDA), with one exhibiting a complex congenital heart defect. It is yet unknown whether these cardiac manifestations were related to ACAD9 mutation. In conclusion, this disorder should be suspected in the presence of lactic acidosis, complex I deficiency, and any cardiac involvement, even mild.


Assuntos
Acil-CoA Desidrogenases/genética , Cardiopatias/genética , Ácido Láctico/sangue , Mutação , Acil-CoA Desidrogenases/metabolismo , Adulto , Criança , Feminino , Predisposição Genética para Doença , Cardiopatias/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Estudos Retrospectivos , Riboflavina/uso terapêutico , Resultado do Tratamento , Adulto Jovem
19.
J Proteome Res ; 14(1): 224-35, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25361611

RESUMO

Complex I (CI; NADH dehydrogenase) deficiency causes mitochondrial diseases, including Leigh syndrome. A variety of clinical symptoms of CI deficiency are known, including neurodegeneration. Here, we report an integrative study combining liquid chromatography-mass spectrometry (LC-MS)-based metabolome and proteome profiling in CI deficient HeLa cells. We report a rapid LC-MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. The proteome was analyzed by label-free quantification (LFQ). More than 6000 protein groups were identified. Pathway and network analyses revealed that the respiratory chain was highly deregulated, with metabolites such as FMN, FAD, NAD(+), and ADP, direct players of the OXPHOS system, and metabolites of the TCA cycle decreased up to 100-fold. Synthesis of functional iron-sulfur clusters, which are of central importance for the electron transfer chain, and degradation products like bilirubin were also significantly reduced. Glutathione metabolism on the pathway level, as well as individual metabolite components such as NADPH, glutathione (GSH), and oxidized glutathione (GSSG), was downregulated. Overall, metabolome and proteome profiles in CI deficient cells correlated well, supporting our integrated approach.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Metaboloma , Proteoma/metabolismo , Rotenona/farmacologia , Apoptose , Sobrevivência Celular , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Células HeLa , Humanos , Regulação para Cima
20.
Clin Genet ; 87(2): 179-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24502327

RESUMO

To investigate the clinical, enzymological and mitochondrial gene profiles of complex I deficiency in Chinese, clinical and laboratory data of the patients (79 boys, 54 girls) were retrospectively assessed. Activities of mitochondrial respiratory chain complexes in peripheral leucocytes were spectrophotometrically measured. The entire mitochondrial DNA (mtDNA) sequence was analyzed in 62 patients. Restriction fragment length polymorphism and gene sequencing analyses were performed in 15 families. Ninety-one patients had isolated complex I deficiency; 42 had combined deficiencies of complex I and other complexes. The main clinical presentations were neuromuscular disorders (107 patients) and non-neurological dysfunction (hepatopathy, renal damage and cardiomyopathy; 26 patients). In 32 of 62 patients who underwent mtDNA sequencing, 24 mutations were identified in 15 mitochondrial genes. The 12338T>C, 4833A>G and 14502T>C mutations were found in 12.9%, 11.3% and 4.8% patients, respectively. Seven patients had multiple mutations. Three novel mutations were identified. Chinese patients with complex I deficiency presented heterogeneous phenotypes and genotypes. Twenty-four mutations were identified in 15 mitochondrial genes in 51.6% patients. mtDNA mutations were more common in isolated complex I deficiency than in combined complex deficiencies. The 12338T>C, 4833A>G and 14502T>C mutations were common.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Adolescente , Povo Asiático , Criança , Pré-Escolar , China , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mitocôndrias/patologia , Doenças Mitocondriais/fisiopatologia , Mutação , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA