RESUMO
The maintenance of cellular function relies on the close regulation of adenosine triphosphate (ATP) synthesis and hydrolysis. ATP hydrolysis by mitochondrial ATP Synthase (CV) is induced by loss of proton motive force and inhibited by the mitochondrial protein ATPase inhibitor (ATPIF1). The extent of CV hydrolytic activity and its impact on cellular energetics remains unknown due to the lack of selective hydrolysis inhibitors of CV. We find that CV hydrolytic activity takes place in coupled intact mitochondria and is increased by respiratory chain defects. We identified (+)-Epicatechin as a selective inhibitor of ATP hydrolysis that binds CV while preventing the binding of ATPIF1. In cells with Complex-III deficiency, we show that inhibition of CV hydrolytic activity by (+)-Epichatechin is sufficient to restore ATP content without restoring respiratory function. Inhibition of CV-ATP hydrolysis in a mouse model of Duchenne Muscular Dystrophy is sufficient to improve muscle force without any increase in mitochondrial content. We conclude that the impact of compromised mitochondrial respiration can be lessened using hydrolysis-selective inhibitors of CV.
Assuntos
Trifosfato de Adenosina , Mitocôndrias , Camundongos , Animais , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas/metabolismo , Homeostase , HidróliseRESUMO
TMEM70 deficiency causing mitochondrial complex V deficiency, nuclear type 2 (MIM: 614052) is the most common nuclear encoded defect affecting ATP synthase and has been well described in the literature as being characterized by neonatal or infantile onset of poor feeding, hypotonia, lethargy, respiratory compromise, heart failure, lactic acidosis, hyperammonemia, and 3-methylglutaconic aciduria progressing to a phenotype of developmental delay, failure to thrive, short stature, nonprogressive cardiomyopathy, microcephaly, facial dysmorphisms, hypospadias, persistent pulmonary hypertension of the newborn, and Wolff-Parkinson-White syndrome, as well as metabolic crises followed by developmental regression. The patient with TMEM70 deficiency herein reported has the unique presentation of aortic root dilatation, differing facial dysmorphisms, and no history of neonatal metabolic decompensation or developmental delay, as well as a plasma metabolomics signature, including elevated 3-methylglutaconic acid, 3-methylglutarylcarnitine, alanine, and lactate, in addition to the commonly described increased 3-methylglutaconic acid on urine organic acid analysis that helped aid in the diagnostic interpretation of variants of uncertain significance in TMEM70.
Assuntos
Aorta Torácica , Cardiomiopatias , Masculino , Humanos , Dilatação , Fenótipo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genéticaRESUMO
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Assuntos
Trifosfato de Adenosina , Doenças não Transmissíveis , Humanos , Glicogênio Sintase/metabolismo , Doenças não Transmissíveis/tratamento farmacológico , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genéticaRESUMO
Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.
Assuntos
Encefalopatias , Doença de Leigh , ATPases Mitocondriais Próton-Translocadoras , Encefalopatias/metabolismo , DNA Complementar/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Proteínas/metabolismoRESUMO
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system-Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Assuntos
Neoplasias Encefálicas , Genoma Mitocondrial , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Genes Mitocondriais , Mutação , Neoplasias Encefálicas/genéticaRESUMO
ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.
Assuntos
Alelos , Doenças Metabólicas/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas/químicaRESUMO
In vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c.
Assuntos
Fosforilação Oxidativa , Animais , Euglena gracilisRESUMO
Several genetic variants in the mitochondrial genome (mtDNA), including ancient polymorphisms, are associated with chronic inflammatory conditions, but investigating the functional consequences of such mtDNA polymorphisms in humans is challenging due to the influence of many other polymorphisms in both mtDNA and the nuclear genome (nDNA). Here, using the conplastic mouse strain B6-mtFVB, we show that in mice, a maternally inherited natural mutation (m.7778G > T) in the mitochondrially encoded gene ATP synthase 8 (mt-Atp8) of complex V impacts on the cellular metabolic profile and effector functions of CD4+ T cells and induces mild changes in oxidative phosphorylation (OXPHOS) complex activities. These changes culminated in significantly lower disease susceptibility in two models of inflammatory skin disease. Our findings provide experimental evidence that a natural variation in mtDNA influences chronic inflammatory conditions through alterations in cellular metabolism and the systemic metabolic profile without causing major dysfunction in the OXPHOS system.
Assuntos
DNA Mitocondrial/genética , Epidermólise Bolhosa Adquirida/genética , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Células Cultivadas , Citocinas/metabolismo , Epidermólise Bolhosa Adquirida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genéticaRESUMO
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an enigmatic condition characterized by exacerbation of symptoms after exertion (post-exertional malaise or "PEM"), and by fatigue whose severity and associated requirement for rest are excessive and disproportionate to the fatigue-inducing activity. There is no definitive molecular marker or known underlying pathological mechanism for the condition. Increasing evidence for aberrant energy metabolism suggests a role for mitochondrial dysfunction in ME/CFS. Our objective was therefore to measure mitochondrial function and cellular stress sensing in actively metabolizing patient blood cells. We immortalized lymphoblasts isolated from 51 ME/CFS patients diagnosed according to the Canadian Consensus Criteria and an age- and gender-matched control group. Parameters of mitochondrial function and energy stress sensing were assessed by Seahorse extracellular flux analysis, proteomics, and an array of additional biochemical assays. As a proportion of the basal oxygen consumption rate (OCR), the rate of ATP synthesis by Complex V was significantly reduced in ME/CFS lymphoblasts, while significant elevations were observed in Complex I OCR, maximum OCR, spare respiratory capacity, nonmitochondrial OCR and "proton leak" as a proportion of the basal OCR. This was accompanied by a reduction of mitochondrial membrane potential, chronically hyperactivated TOR Complex I stress signaling and upregulated expression of mitochondrial respiratory complexes, fatty acid transporters, and enzymes of the ß-oxidation and TCA cycles. By contrast, mitochondrial mass and genome copy number, as well as glycolytic rates and steady state ATP levels were unchanged. Our results suggest a model in which ME/CFS lymphoblasts have a Complex V defect accompanied by compensatory upregulation of their respiratory capacity that includes the mitochondrial respiratory complexes, membrane transporters and enzymes involved in fatty acid ß-oxidation. This homeostatically returns ATP synthesis and steady state levels to "normal" in the resting cells, but may leave them unable to adequately respond to acute increases in energy demand as the relevant homeostatic pathways are already activated.
Assuntos
Trifosfato de Adenosina/metabolismo , Síndrome de Fadiga Crônica/metabolismo , Linfócitos/citologia , ATPases Mitocondriais Próton-Translocadoras/deficiência , Adulto , Idoso , Canadá , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Metabolismo Energético , Feminino , Humanos , Linfócitos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Consumo de Oxigênio , Proteômica/métodosRESUMO
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a devastating illness whose biomedical basis is now beginning to be elucidated. We reported previously that, after recovery from frozen storage, lymphocytes (peripheral blood mononuclear cells, PBMCs) from ME/CFS patients die faster in culture medium than those from healthy controls. We also found that lymphoblastoid cell lines (lymphoblasts) derived from these PBMCs exhibit multiple abnormalities in mitochondrial respiratory function and signalling activity by the cellular stress-sensing kinase Target Of Rapamycin Complex 1 (TORC1). These differences were correlated with disease severity, as measured by the Richardson and Lidbury weighted standing test. The clarity of the differences between these cells derived from ME/CFS patient blood and those from healthy controls suggested that they may provide useful biomarkers for ME/CFS. Here, we report a preliminary investigation into that possibility using a variety of analytical classification tools, including linear discriminant analysis, logistic regression and receiver operating characteristic (ROC) curve analysis. We found that results from three different tests-lymphocyte death rate, mitochondrial respiratory function and TORC1 activity-could each individually serve as a biomarker with better than 90% sensitivity but only modest specificity vís a vís healthy controls. However, in combination, they provided a cell-based biomarker with sensitivity and specificity approaching 100% in our sample. This level of sensitivity and specificity was almost equalled by a suggested protocol in which the frozen lymphocyte death rate was used as a highly sensitive test to triage positive samples to the more time consuming and expensive tests measuring lymphoblast respiratory function and TORC1 activity. This protocol provides a promising biomarker that could assist in more rapid and accurate diagnosis of ME/CFS.
Assuntos
Síndrome de Fadiga Crônica/sangue , Leucócitos Mononucleares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Síndrome de Fadiga Crônica/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e EspecificidadeRESUMO
Sodium thiosulfate preconditioning (SIPC) was recently reported to be cardioprotective due to its ability to inhibit caspase-3 activation, chelate calcium ions and scavenge free radicals. However, the rationale behind its ability to improve the contractility of isolated rat heart challenged with ischemia-reperfusion injury (IR) is not well understood. As mitochondrial preservation is implicated in cardioprotection against IR, the present study was conceived to identify whether the cardioprotective effects of SIPC is associated with mitochondrial preservation. Using the isolated Langendorff rat heart model, 1 mM sodium thiosulfate (STS) was used to precondition the rat heart before IR and was used to study its effect on cardiac mitochondria. The IR heart experienced a ventricular contractile dysfunction that was improved by SIPC. Upon assessing in-gel the ATP synthetic capacity of mitochondria from IR heart, there was a significant decline, while in SIPC it was well preserved close to sham. As a sustained flow of electrons through the ETC and well-integrated mitochondria are the prerequisites for ATP synthesis, SIPC improved the activities of ETC complex enzymes (I-IV), which was reflected from the preserved ultrastructure of the mitochondria as analyzed from electron-microscopy in the treated rat hearts. This observation was coherent with the elevated expression of PGC1α (20%), a critical regulator of ATP production, which increased the mitochondrial copy number as well in the STS treated heart compared to IR. In conclusion, mitochondria might be a critical target for SIPC mediated cardioprotection against IR.
Assuntos
Cardiotônicos/farmacologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Tiossulfatos/farmacologia , Animais , Masculino , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos WistarRESUMO
The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-ß-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.
Assuntos
Proteínas de Algas/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fosforilação Oxidativa , Volvocida/metabolismo , Proteínas de Algas/genética , Detergentes/química , Digitonina/química , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Glucosídeos/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Ligação Proteica , Volvocida/genéticaRESUMO
Mitochondrial Lon1 loss impairs oxidative phosphorylation complexes and TCA enzymes and causes accumulation of specific mitochondrial proteins. Analysis of over 400 mitochondrial protein degradation rates using 15 N labelling showed that 205 were significantly different between wild type (WT) and lon1-1. Those proteins included ribosomal proteins, electron transport chain subunits and TCA enzymes. For respiratory complexes I and V, decreased protein abundance correlated with higher degradation rate of subunits in total mitochondrial extracts. After blue native separation, however, the assembled complexes had slow degradation, while smaller subcomplexes displayed rapid degradation in lon1-1. In insoluble fractions, a number of TCA enzymes were more abundant but the proteins degraded slowly in lon1-1. In soluble protein fractions, TCA enzymes were less abundant but degraded more rapidly. These observations are consistent with the reported roles of Lon1 as a chaperone aiding the proper folding of newly synthesized/imported proteins to stabilise them and as a protease to degrade mitochondrial protein aggregates. HSP70, prohibitin and enzymes of photorespiration accumulated in lon1-1 and degraded slowly in all fractions, indicating an important role of Lon1 in their clearance from the proteome.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mutação , Dobramento de Proteína , Proteólise , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Plântula/genética , Plântula/metabolismo , Serina Endopeptidases/genéticaRESUMO
SLC25A1 mutations are associated with combined D,L-2-hydroxyglutaric aciduria (DL- 2HGA; OMIM #615182), characterized by muscular hypotonia, severe neurodevelopmental dysfunction and intractable seizures. SLC25A1 encodes the mitochondrial citrate carrier (CIC), which mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Only a single family with an SLC25A1 mutation has been described in which mitochondrial respiratory chain dysfunction was documented, specifically in complex IV. Five infants of two consanguineous Bedouin families of the same tribe presented with small head circumference and neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development culminating in early death. Ventricular septal defects (VSD) were demonstrated in three patients. Blood and CSF lactate were elevated with normal levels of plasma amino acids and free carnitine and increased 2-OH-glutaric acid urinary exertion. EEG was compatible with white matter disorder. Brain MRI revealed ventriculomegaly, thin corpus callosum with increased lactate peak on spectroscopy. Mitochondrial complex V deficiency was demonstrated in skeletal muscle biopsy of one infant. Homozygosity mapping and sequencing ruled out homozygosity of affected individuals in all known complex V-associated genes. Whole exome sequencing identified a novel homozygous SLC25A1 c.713A>G (p.Asn238Ser) mutation, segregating as expected in the affected kindred and not found in 220 control alleles. Thus, SLC25A1 mutations might be associated with mitochondrial complex V deficiency and should be considered in the differential diagnosis of mitochondrial respiratory chain defects.
Assuntos
Proteínas de Transporte de Ânions/genética , Homozigoto , Mitocôndrias/genética , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Adolescente , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Transportadores de Ânions Orgânicos , Linhagem , Fenótipo , Adulto JovemRESUMO
Ascertaining the structure and functions of mitochondrial respiratory chain complexes is essential to understanding the biological mechanisms of energy conversion; therefore, numerous studies have examined these complexes. A fundamental part of that research involves devising a method for purifying samples with good reproducibility; the samples obtained need to be stable and their constituents need to retain the same structure and functions they possess when in mitochondrial membranes. Submitochondrial bovine heart particles were isolated using differential centrifugation to adjust to a membrane concentration of 46.0% (w/v) or 31.5% (w/v) based on weight. After 0.7% (w/v) deoxycholic acid, 0.4% (w/v) decyl maltoside, and 7.2% (w/v) potassium chloride were added to the mitochondrial membranes, those membranes were solubilized. At a membrane concentration of 46%, complex V was selectively solubilized, whereas at a concentration of 31.5% (w/v), complexes I and III were solubilized. Two steps-sucrose density gradient centrifugation and anion-exchange chromatography on a POROS HQ 20⯵m column-enabled selective purification of samples that retained their structure and functions. These two steps enabled complexes I, III, and V to be purified in two days with a high yield. Complexes I, III, and V were stabilized with n-decyl-ß-D-maltoside. A total of 200â¯mg-300â¯mg of those complexes from one bovine heart (1.1â¯kg muscle) was purified with good reproducibility, and the complexes retained the same functions they possessed while in mitochondrial membranes.
Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias Cardíacas/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Miocárdio/enzimologia , Animais , Bovinos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Proteínas Mitocondriais/química , Proteínas Mitocondriais/isolamento & purificação , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , SolubilidadeRESUMO
Mitochondrial respiratory-chain complexes from Euglenozoa comprise classical subunits described in other eukaryotes (i.e. mammals and fungi) and subunits that are restricted to Euglenozoa (e.g. Euglena gracilis and Trypanosoma brucei). Here we studied the mitochondrial F1FO-ATP synthase (or Complex V) from the photosynthetic eukaryote E. gracilis in detail. The enzyme was purified by a two-step chromatographic procedure and its subunit composition was resolved by a three-dimensional gel electrophoresis (BN/SDS/SDS). Twenty-two different subunits were identified by mass-spectrometry analyses among which the canonical α, ß, γ, δ, ε, and OSCP subunits, and at least seven subunits previously found in Trypanosoma. The ADP/ATP carrier was also associated to the ATP synthase into a dimeric ATP synthasome. Single-particle analysis by transmission electron microscopy of the dimeric ATP synthase indicated that the structures of both the catalytic and central rotor parts are conserved while other structural features are original. These new features include a large membrane-spanning region joining the monomers, an external peripheral stalk and a structure that goes through the membrane and reaches the inter membrane space below the c-ring, the latter having not been reported for any mitochondrial F-ATPase.
Assuntos
Euglena gracilis/enzimologia , ATPases Mitocondriais Próton-Translocadoras/análise , Microscopia Eletrônica , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Multimerização Proteica , Subunidades Proteicas/análiseRESUMO
Mitochondrial F1FO-ATP synthase of chlorophycean algae is dimeric. It contains eight orthodox subunits (alpha, beta, gamma, delta, epsilon, OSCP, a and c) and nine atypical subunits (Asa1 to 9). These subunits build the peripheral stalk of the enzyme and stabilize its dimeric structure. The location of the 66.1kDa subunit Asa1 has been debated. On one hand, it was found in a transient subcomplex that contained membrane-bound subunits Asa1/Asa3/Asa5/Asa8/a (Atp6)/c (Atp9). On the other hand, Asa1 was proposed to form the bulky structure of the peripheral stalk that contacts the OSCP subunit in the F1 sector. Here, we overexpressed and purified the recombinant proteins Asa1 and OSCP and explored their interactions in vitro, using immunochemical techniques and affinity chromatography. Asa1 and OSCP interact strongly, and the carboxy-terminal half of OSCP seems to be instrumental for this association. In addition, the algal ATP synthase was partially dissociated at relatively high detergent concentrations, and an Asa1/Asa3/Asa5/Asa8/a/c10 subcomplex was identified. Furthermore, Far-Western analysis suggests an Asa1-Asa8 interaction. Based on these results, a model is proposed in which Asa1 spans the whole peripheral arm of the enzyme, from a region close to the matrix-exposed side of the mitochondrial inner membrane to the F1 region where OSCP is located. 3D models show elongated, helix-rich structures for chlorophycean Asa1 subunits. Asa1 subunit probably plays a scaffolding role in the peripheral stalk analogous to the one of subunit b in orthodox mitochondrial enzymes.
Assuntos
Clorófitas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Subunidades ProteicasRESUMO
The algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600 kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Assuntos
Proteínas de Algas/química , Chlamydomonas reinhardtii/química , Mitocôndrias/química , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas/química , Volvocida/química , Proteínas de Algas/genética , Proteínas de Algas/isolamento & purificação , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Expressão Gênica , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/isolamento & purificação , Polímeros/química , Propilaminas/química , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Volvocida/enzimologia , Volvocida/genéticaRESUMO
Mitochondrial (mt) DNA-associated NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) syndrome is due to mutation in the MT-ATP6 gene. We report the case of a 18-year-old man who presented with deafness, a myoclonic epilepsy, muscle weakness since the age of 10 and further developed a retinitis pigmentosa and ataxia. The whole mtDNA analysis by next-generation sequencing revealed the presence of the 2 bp microdeletion m.9127-9128 del AT in the ATP6 gene at 82% heteroplasmy in muscle and to a lower load in blood (10-20%) and fibroblasts (50%). Using the patient's fibroblasts, we demonstrated a 60% reduction of the oligomycin-sensitive ATPase hydrolytic activity, a 40% decrease in the ATP synthesis and determination of the mitochondrial membrane potential using the fluorescent probe tetramethylrhodamine, ethyl ester indicated a significant reduction in oligomycin sensitivity. In conclusion, we demonstrated that this novel AT deletion in the ATP6 gene is pathogenic and responsible for the NARP syndrome.
Assuntos
Miopatias Mitocondriais/enzimologia , Miopatias Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Deleção de Sequência , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Análise Mutacional de DNA , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oligomicinas/farmacologia , Síndrome , Adulto JovemRESUMO
We investigated the effect of chrysin on isolated normal and chronic lymphocytic leukemia (CLL) B-lymphocytes and their isolated mitochondria. We report that a selective and significant increase in cytotoxicity, intracellular reactive oxygen species, mitochondrial membrane potential collapse, ADP/ATP ratio, caspase 3 activation and finally apoptosis in chrysin-treated CLL B- lymphocytes. Also we determined that chrysin selectively inhibits complex II and ATPases in cancerous mitochondria. In this study we proved that the ability of chrysin to promote apoptosis in CLL B-lymphocytes performed by selectively targeting of mitochondria. Our findings may provide a potential therapeutic approach for using chrysin to target mitochondria in CLL B-lymphocytes.