Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Nano Lett ; 24(32): 9793-9800, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087649

RESUMO

O3-type layered oxides have been extensively studied as cathode materials for sodium-ion batteries due to their high reversible capacity and high initial sodium content, but they suffer from complex phase transitions and an unstable structure during sodium intercalation/deintercalation. Herein, we synthesize a high-entropy O3-type layered transition metal oxide, NaNi0.3Cu0.05Fe0.1Mn0.3Mg0.05Ti0.2O2 (NCFMMT), by simultaneously doping Cu, Mg, and Ti into its transition metal layers, which greatly increase structural entropy, thereby reducing formation energy and enhancing structural stability. The high-entropy NCFMMT cathode exhibits significantly improved cycling stability (capacity retention of 81.4% at 1C after 250 cycles and 86.8% at 5C after 500 cycles) compared to pristine NaNi0.3Fe0.4Mn0.3O2 (71% after 100 cycles at 1C), as well as remarkable air stability. Finally, the NCFMMT//hard carbon full-cell batteries deliver a high initial capacity of 103 mAh g-1 at 1C, with 83.8 mAh g-1 maintained after 300 cycles (capacity retention of 81.4%).

2.
Small ; 20(6): e2304969, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771192

RESUMO

Magnesium-ion batteries are widely studied for its environmentally friendly, low-cost, and high volumetric energy density. In this work, the solvothermal method is used to prepare titanium dioxide bronze (TiO2 -B) nanoflowers with different nickel (Ni) doping concentrations for use in magnesium ion batteries as cathode materials. As Ni doping enhances the electrical conductivity of TiO2 -B and promotes magnesium ion diffusion, the band gap of TiO2 -B host material can be significantly reduced, and as Ni content increases, diffusion contributes more to capacity. According to the electrochemical test, TiO2 -B exhibits excellent electrochemical performance when the Ni element doping content is 2 at% and it is coated with reduced graphene oxide@carbon nanotube (RGO@CNT). At a current density of 100 mA g-1 , NT-2/RGO@CNT discharge specific capacity is as high as 167.5 mAh g-1 , which is 2.36 times of the specific discharge capacity of pure TiO2 -B. It is a very valuable research material for magnesium ion battery cathode materials.

3.
Small ; 20(32): e2400108, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511540

RESUMO

Aqueous rechargeable proton batteries are attractive due to the small ionic radius, light mass, and ultrafast diffusion kinetics of proton as charge carriers. However, the commonly used acidic electrolyte is usually very corrosive to the electrode material, which seriously affects the cycle life of the battery. Here, it is proposed that decreasing water activity and limiting proton concentration can effectively prevent side reactions of the MoO3 anode such as corrosion and hydrogen precipitation by using a lean-water hydrogel electrolyte. The as-prepared polyacrylamide (PAAM)-poly2-acrylamide-2-methylpropanesulfonic acid (PAMPS)/MnSO4 (PPM) hydrogel electrolyte not only has abundant hydrophilic groups that can form hydrogen bonds with free water and inhibit solvent-electrode interaction, but also has fixed anions that can maintain a certain interaction with protons. The assembled MoO3||MnO2 full battery can stably cycle over 500 times for ≈350 h with an unprecedented capacity retention of 100% even at a low current density of 0.5 A g-1. This work gives a hint that limiting free water as well as proton concentration is important for the design of electrolytes or interfaces in aqueous proton batteries.

4.
Small ; : e2406489, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340269

RESUMO

Silicon (Si) has attracted considerable attention as a promising alternative to graphite in lithium-ion batteries (LIBs) because of its high theoretical capacity and voltage. However, the durability and cycling stability of Si-based composites have emerged as major obstacles to their widespread adoption as LIBs anode materials. To tackle these challenges, a hollow core-shell dodecahedra structure of a Si-based composite (HD-Si@C) is developed through a novel double-layer in situ growth approach. This innovative design ensures that the nano-sized Si particles are evenly distributed within a hollow carbon shell, effectively addressing issues like Si fragmentation, volume expansion, and detachment from the carbon layer during cycles. The HD-Si@C composite demonstrates remarkable structural integrity as a LIBs anode, resulting in exceptional electrochemical performance and promising practical applications, as evidenced by tests in pouch-type full cells. Notably, the composite shows outstanding cycling stability, retaining 85% of its initial capacity (713 mAh g-1) even after 3000 cycles at a high current rate of 5000 mA g-1. Additionally, the material achieves a gravimetric energy density of 369 W h kg-1, showcasing its potential for efficient energy storage solutions. This research signifies a significant step toward realizing the practical utilization of Si-based materials in the next generation of LIBs.

5.
Small ; : e2403275, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934359

RESUMO

Due to the intrinsic flame-retardant, eutectic electrolytes are considered a promising candidate for sodium-metal batteries (SMBs). However, the high viscosity and ruinous side reaction with Na metal anode greatly hinder their further development. Herein, based on the Lewis acid-base theory, a new eutectic electrolyte (EE) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI), succinonitrile (SN), and fluoroethylene carbonate (FEC) is reported. As a strong Lewis base, the ─C≡N group of SN can effectively weaken the interaction between Na+ and TFSI-, achieving the dynamic equilibrium and reducing the viscosity of EE. Moreover, the FEC additive shows a low energy level to construct thicker and denser solid electrolyte interphase (SEI) on the Na metal surface, which can effectively eliminate the side reaction between EE and Na metal anode. Therefore, EE-1:6 + 5% FEC shows high ionic conductivity (2.62 mS cm-1) and ultra-high transference number of Na+ (0.96). The Na||Na symmetric cell achieves stable Na plating/stripping for 1100 h and Na||Na3V2(PO4)3/C cell shows superior long-term cycling stability over 2000 cycles (99.1% retention) at 5 C. More importantly, the Na||NVP/C pouch cell demonstrates good cycling performance of 102.1 mAh g-1 after 135 cycles at 0.5 C with an average coulombic efficiency of 99.63%.

6.
Small ; 20(37): e2401645, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38764309

RESUMO

Anionic redox chemistry enables extraordinary capacity for Li- and Mn-rich layered oxides (LMROs) cathodes. Unfortunately, irreversible surface oxygen evolution evokes the pernicious phase transition, structural deterioration, and severe electrode-electrolyte interface side reaction with element dissolution, resulting in fast capacity and voltage fading of LMROs during cycling and hindering its commercialization. Herein, a redox couple strategy is proposed by utilizing copper phthalocyanine (CuPc) to address the irreversibility of anionic redox. The Cu-N synergistic effect of CuPc could not only inhibit surface oxygen evolution by reducing the peroxide ion O2 2- back to lattice oxygen O2-, but also enhance the reaction activity and reversibility of anionic redox in bulk to achieve a higher capacity and cycling stability. Moreover, the CuPc strategy suppresses the interface side reaction and induces the forming of a uniform and robust LiF-rich cathode electrolyte, interphase (CEI) to significantly eliminate transition metal dissolution. As a result, the CuPc-enhanced LMRO cathode shows superb cycling performance with a capacity retention of 95.0% after 500 long-term cycles. This study sheds light on the great effect of N-based redox couple to regulate anionic redox behavior and promote the development of high energy density and high stability LMROs cathode.

7.
Small ; 20(32): e2400010, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38470199

RESUMO

Rechargeable Li-O2 batteries (LOBs) are considered as one of the most promising candidates for new-generation energy storage devices. One of major impediments is the poor cycle stability derived from the sluggish reaction kinetics of unreliable cathode catalysts, hindering the commercial application of LOBs. Therefore, the rational design of efficient and durable catalysts is critical for LOBs. Optimizing surface electron structure via the negative shift of the d-band center offers a reasonable descriptor for enhancing the electrocatalytic activity. In this study, the construction of Ni-incorporating RuO2 porous nanospheres is proposed as the cathode catalyst to demonstrate the hypothesis. Density functional theory calculations reveal that the introduction of Ni atoms can effectively modulate the surface electron structure of RuO2 and the adsorption capacities of oxygen-containing intermediates, accelerating charge transfer between them and optimizing the growth pathway of discharge products. Resultantly, the LOBs exhibit a large discharge specific capacity of 19658 mA h g-1 at 200 mA g-1 and extraordinary cycle life of 791 cycles. This study confers the concept of d-band center modulation for efficient and durable cathode catalysts of LOBs.

8.
Small ; 20(25): e2307250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196305

RESUMO

A novel all-solid-state thin-film lithium-ion battery (LIB) is presented to address the trade-off issue between the specific capacity and stabilities in a conventional LIB. Different from the conventional one, this LIB device consists of two same LIB components located at the front and back surfaces of the substrate, respectively. These two LIB components form parallel connection by using the conductive through vias distributed in the substrate. Compared with the conventional one, this LIB device doubles the areal specific capacity. More importantly, due to the stress-compensation effect, this device effectively suppresses the stress induced by its volume changes resulting from the lithiation/delithiation processes and thermal expansion. Consequently, this device shows good cycling and thermal stabilities even when working at an industrial-grade high temperature of 125 °C. To further improve the specific capacity without sacrificing the stabilities, a 3D stacked LIB is successfully realized by using this LIB device as the cell, in which each cell is parallelly connected by using the above-mentioned conductive through vias. This 3D stacked LIB is experimentally demonstrated to obtain high specific capacity (79.9 µAh cm-2) and good stabilities (69.3% of retained capacity after 100 cycles at 125 °C) simultaneously.

9.
Chemphyschem ; 25(6): e202300835, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372432

RESUMO

With the popularity and development of electronic devices, the demand for lithium batteries is increasing, which also puts high demands on the energy density, cycle life and safety of lithium batteries. Gel electrolytes achieve both of these requirements by curing the electrolytes to reduce the interfacial side reactions of lithium metal batteries. The ionic conductivity of the gel electrolytes prepared by in situ curing reach 8.0×10-4  S cm-1 , and the ionic mobility number is 0.53. Meanwhile, the gel electrolytes maintain a stable electrochemical window of 1.0-5.0 V. Benefited with the interfacial regulation of PEGDA gel electrolytes, the gel lithium metal batteries show better cycling stability, and achieved 97 % capacity retention after 200 cycles (0.2 C) with a lower increasing rate of impedance.

10.
Nanotechnology ; 35(15)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38150723

RESUMO

Smart energy storage systems, such as electrochromic supercapacitor (ECSC) integrated technology, have drawn a lot of attention recently, and numerous developments have been made owing to their reliable performance. Developing novel electrode materials for ECSCs that embed two different technologies in a material is an exciting and emerging field of research. To date, the research into ECSC electrode materials has been ongoing with excellent efforts, which need to be systematically reviewed so that they can be used to develop more efficient ECSCs. This mini-review provides a general composition, main evaluation parameters and future perspectives for electrode materials of ECSCs as well as a brief overview of the published reports on ECSCs and performance statistics on the existing literature in this field.

11.
Macromol Rapid Commun ; 45(1): e2300237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37232260

RESUMO

Conducting polymers like polyaniline (PANI) are promising pseudocapacitive electrode materials, yet experience instability in cycling performance. Since polymers often degrade into oligomers, short chain length anilines have been developed to improve the cycling stability of PANI-based supercapacitors. However, the capacitance degradation mechanisms of aniline oligomer-based materials have not been systematically investigated and are little understood. Herein, two composite electrodes based on aniline trimers (AT) and carbon nanotubes (CNTs) are studied as model systems and evaluated at both pre-cycling and post-cycling states through physicochemical and electrochemical characterizations. The favorable effect of covalent bonding between AT and CNTs is confirmed to enhance cycling stability by preventing the detachment of aniline trimer and preserving the electrode microstructure throughout the charge/discharge cycling process. In addition, higher porosity has a positive effect on electron/ion transfer and the adaptation to volumetric changes, resulting in higher conductivity and extended cycle life. This work provides insights into the mechanism of enhanced cycling stability of aniline oligomers, indicating design features for aniline oligomer electrode materials to improve their electrochemical performance.


Assuntos
Nanotubos de Carbono , Polímeros , Polímeros/química , Nanotubos de Carbono/química , Compostos de Anilina/química
12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34011610

RESUMO

In terms of ideal future energy storage systems, besides the always-pursued energy/power characteristics, long-term stability is crucial for their practical application. Here, we report a facile and sustainable strategy for the scalable fabrication of carbon aerogels with three-dimensional interconnected nanofiber networks and rationally designed hierarchical porous structures, which are based on the carbonization of bacterial cellulose assisted by the soft template of Zn-1,3,5-benzenetricarboxylic acid. As binder-free electrodes, they deliver a fundamentally enhanced specific capacitance of 352 F ⋅ g-1 at 1 A ⋅ g-1 in a wide potential window (1.2 V, 6 M KOH) in comparison with those of bacterial cellulose-derived carbons (178 F ⋅ g-1) and most activated carbons (usually lower than 250 F ⋅ g-1). The as-assembled supercapacitors exhibit an ultrahigh capacitance of 297 F ⋅ g-1 at 1 A ⋅ g-1, remarkable energy density (14.83 Wh ⋅ kg-1 at 0.60 kW ⋅ kg-1), and extremely high stability, with 100% capacitance retention for up to 65,000 cycles at 6 A ⋅ g-1, representing their superior energy storage performance when compared with that of state-of-the-art supercapacitors of commercial activated carbons and biomass-derived analogs.

13.
Nano Lett ; 23(18): 8515-8523, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37669534

RESUMO

Lithium (Li) metal is a promising anode material for high-energy-density Li batteries due to its high specific capacity. However, the uneven deposition of Li metal causes significant volume expansion and safety concerns. Here, we investigate the impact of a gradient-infused Li-metal anode using silver (Ag)-decorated carbonized cellulose fibers (Ag@CC) as a three-dimensional (3D) current collector. The loading level of the gradient-infused Li-metal anode is controlled by the thermal infusion time of molten Li. In particular, a 5 s infusion time in the Ag@CC current collector creates an appropriate space with a lithiophilic surface, resulting in improved cycling stability and a reduced volume expansion rate. Moreover, integrating a 5 s Ag@CC anode with a high-capacity cathode demonstrates superior electrochemical performance with minimal volume expansion. This suggests that a gradient-infused Li-metal anode using Ag@CC as a 3D current collector represents a novel design strategy for Li-metal-based high-capacity Li-ion batteries.

14.
Nano Lett ; 23(8): 3317-3325, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039594

RESUMO

Long cycle life and high energy/power density are imperative to energy storage systems. Polyaniline (PANI) has shown great potential as an electrode material but is limited by poor cycling and rate performance. We present a molecular design approach of binding short-chain aniline trimers (ATs) and carbon nanotubes (CNTs) through the formation of amide covalent linkages enabled by a simple laser scribing technique. The covalently coupled AT/CNT (cc-AT/CNT) composite retains 80% of its original capacitance after 20 000 charge/discharge cycles, which readily outperforms long-chain PANI/CNT composites without covalent connections. The compact AT/CNT heterointerfaces produce fast charge/discharge kinetics and excellent rate capability. The flexible symmetric quasi-solid-state devices can be stably cycled beyond 50 000 cycles, at least 5 times longer than most PANI/CNT-based symmetric supercapacitors reported to date. This molecular design of durable conducting polymer-based electrode materials enabled by laser irradiation presents a feasible approach toward robust advanced energy storage devices.

15.
Molecules ; 29(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999139

RESUMO

With the intensification of the energy crisis, it is urgent to vigorously develop new environment-friendly energy storage materials. In this work, coexisting ferroelectric and relaxor-ferroelectric phases at a nanoscale were constructed in Sr(Zn1/3Nb2/3)O3 (SZN)-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT) ceramics, simultaneously contributing to large polarization and breakdown electric field and giving rise to a superior energy storage performance. Herein, a high recoverable energy density (Wrec) of 5.0 J/cm3 with a conversion efficiency of 82% at 370 kV/cm, a practical discharged energy density (Wd) of 1.74 J/cm3 at 230 kV/cm, a large power density (PD) of 157.84 MW/cm3, and an ultrafast discharge speed (t0.9) of 40 ns were achieved in the 0.85BNBT-0.15SZN ceramics characterized by the coexistence of a rhombohedral-tetragonal phase (ferroelectric state) and a pseudo-cubic phase (relaxor-ferroelectric state). Furthermore, the 0.85BNBT-0.15SZN ceramics also exhibited excellent temperature stability (25-120 °C) and cycling stability (104 cycles) of their energy storage properties. These results demonstrate the great application potential of 0.85BNBT-0.15SZN ceramics in capacitive pulse energy storage devices.

16.
Angew Chem Int Ed Engl ; 63(29): e202406513, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679573

RESUMO

Alloying-type anodes show capacity and density advantages for sodium/potassium-ion batteries (SIBs/PIBs), but they encounter serious structural degradation upon cycling, which cannot be resolved through conventional nanostructuring techniques. Herein, we present an in-depth study to reveal the intrinsic reason for the pulverization of bismuth (Bi) materials upon (de)alloying, and report a novel particle-in-bulk architecture with Bi nanospheres inlaid in the bulk carbon (BiNC) to achieve durable Na/K storage. We simulate the volume-expansion-resistant mechanism of Bi during the (de)alloying reaction, and unveil that the irreversible phase transition upon (de)alloying underlies the fundamental origin for the structural degradation of Bi anode, while a proper compressive stress (~10 %) raised by the bulk carbon can trigger a "domino-like" Bi crystal recovering. Consequently, the as obtained BiNC exhibits a record high volumetric capacity (823.1 mAh cm-3 for SIBs, 848.1 mAh cm-3 for PIBs) and initial coulombic efficiency (95.3 % for SIBs, 96.4 % for PIBs), and unprecedented cycling stability (15000 cycles for SIBs with only 0.0015 % degradation per cycle), outperforming the state-of-the-art literature. This work provides new insights on the undesirable structural evolution, and proposes basic guidelines for design of the anti-degradation structure for alloy-type electrode materials.

17.
Angew Chem Int Ed Engl ; 63(21): e202400230, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38520070

RESUMO

Hydrogels hold great promise as electrolytes for emerging aqueous batteries, for which establishing a robust electrode-hydrogel interface is crucial for mitigating side reactions. Conventional hydrogel electrolytes fabricated by ex situ polymerization through either thermal stimulation or photo exposure cannot ensure complete interfacial contact with electrodes. Herein, we introduce an in situ electropolymerization approach for constructing hydrogel electrolytes. The hydrogel is spontaneously generated during the initial cycling of the battery, eliminating the need of additional initiators for polymerization. The involvement of electrodes during the hydrogel synthesis yields well-bonded and deep infiltrated electrode-electrolyte interfaces. As a case study, we attest that, the in situ-formed polyanionic hydrogel in Zn-MnO2 battery substantially improves the stability and kinetics of both Zn anode and porous MnO2 cathode owing to the robust interfaces. This research provides insight to the function of hydrogel electrolyte interfaces and constitutes a critical advancement in designing highly durable aqueous batteries.

18.
Angew Chem Int Ed Engl ; : e202411427, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090767

RESUMO

Regulating the electrical double layer (EDL) structure can enhance the cycling stability of Zn metal anodes, however, the effectiveness of this strategy is significantly limited by individual additives. Inspired by the high-entropy (HE) concept, we developed a multicomponent (MC) EDL structure composed of La3+, Cl-, and BBI anions by adding dibenzenesulfonimide (BBI) and LaCl3 additives into ZnSO4 electrolytes (BBI/LaCl3/ZnSO4). Specifically, La3+ ions accumulate within EDL to shield the net charges on the Zn surface, allowing more BBI anions and Cl- ions to enter this region. Consequently, this unique MC EDL enables Zn anodes to simultaneously achieve uniform electric field, robust SEI layer, and balanced reaction kinetics. Moreover, the synergistic parameter - a novel descriptor for quantifying collaborative improvement - was first proposed to demonstrates the synergistic effect between BBI and LaCl3 additives. Benefitting from these advantages, Zn metal anodes achieved a high reversibility of 99.5 % at a depth of discharge (DoD) of 51.3 %, and Zn|MnO2 pouch cells exhibited a stable cycle life of 100 cycles at a low N/P ratio of 2.9.

19.
Angew Chem Int Ed Engl ; : e202411579, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086196

RESUMO

Prussian blue analogues (PBAs) have been widely studied in aqueous zinc-ion batteries (AZIBs) due to the characteristics of large specific surface area, open aperture, and straightforward synthesis. In this work, vanadium-based PBA nanocubes were firstly prepared using a mild in-situ conversion strategy at room temperature without the protection of noble gas. Benefiting from the multiple-redox active sites of V3+/V4+, V4+/V5+ and Fe2+/Fe3+, the cathode exhibited an excellent discharge specific capacity of 200 mA h g-1 in AZIBs, which is much higher than those of other metal-based PBAs nanocubes. To further improve the long-term cycling stability of the V-PBA cathode, a high concentration water-in-salt electrolyte (4.5 M ZnSO4 + 3 M Zn(OTf)2), and a water-based eutectic electrolyte (5.55 M glucose + 3 M Zn(OTf)2) were designed to successfully inhibit the dissolution of vanadium and improve the deposition of Zn2+ onto the zinc anode. More importantly, the assembled AZIBs maintained 55% of their highest discharge specific capacity even after 10000 cycles at 10 A g-1 with superior rate capability. This study provides a new strategy for the preparation of pure PBA nanostructures and a new direction for enhancing the long-term cycling stability of PBA-based AZIBs at high current densities for industrialization prospects.

20.
Small ; 19(45): e2302788, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431201

RESUMO

Prussian blue analogs are well suited for sodium-ion battery cathode materials due to their cheap cost and high theoretical specific capacity. Nax CoFe(CN)6 (CoHCF), one of the PBAs, has poor rate performance and cycling stability, while Nax FeFe(CN)6 (FeHCF) has better rate and cycling performance. The CoHCF@FeHCF core-shell structure is designed with CoHCF as the core material and FeHCF as the shell material to enhance the electrochemical properties. The successfully prepared core-shell structure leads to a significant improvement in the rate performance and cycling stability of the composite compared to the unmodified CoHCF. The composite sample of core-shell structure has a specific capacity of 54.8 mAh g-1 at high magnification of 20 C (1 C = 170 mA g-1 ). In terms of cycle stability, it has a capacity retention rate of 84.1% for 100 cycles at 1 C, and a capacity retention rate of 82.7% for 200 cycles at 5 C. Kinetic analysis shows that the composite sample with the core-shell structure has fast kinetic characteristics, and the surface capacitance occupation ratio and sodium-ion diffusion coefficient are higher than those of the unmodified CoHCF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA