Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 87(1): 496-508, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314033

RESUMO

PURPOSE: Radiofrequency field inhomogeneity is a significant issue in imaging large fields of view in high- and ultrahigh-field MRI. Passive shimming with coupled coils or dielectric pads is the most common approach at 3 T. We introduce and test light and compact metasurface, providing the same homogeneity improvement in clinical abdominal imaging at 3 T as a conventional dielectric pad. METHODS: The metasurface comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on a flexible polyimide substrate supports propagation of slow electromagnetic waves similar to a high-permittivity slab. We compare the metasurface operating inside a transmit body birdcage coil to the state-of-the-art pad by numerical simulations and in vivo study on healthy volunteers. RESULTS: Numerical simulations with different body models show that the local minimum of B1+ causing a dark void in the abdominal domain is removed by the metasurface with comparable resulting homogeneity as for the pad with decreasing maximum and whole-body SAR values. In vivo results confirm similar homogeneity improvement and demonstrate the stability to body mass index. CONCLUSION: The light, flexible, and inexpensive metasurface can replace a relatively heavy and expensive pad based on the aqueous suspension of barium titanate in abdominal imaging at 3 T.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Abdome/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
2.
Magn Reson Med ; 82(5): 1822-1831, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199014

RESUMO

PURPOSE: One of the main concerns in fetal MRI is the radiofrequency power that is absorbed both by the mother and the fetus. Passive shimming using high permittivity materials in the form of "dielectric pads" has previously been shown to increase the B1+ efficiency and homogeneity in different applications, while reducing the specific absorption rate (SAR). In this work, we study the effect of optimized dielectric pads for 3 pregnant models. METHODS: Pregnant models in the 3rd, 7th, and 9th months of gestation were used for simulations in a birdcage coil at 3T. Dielectric pads were optimized regions of interest (ROI) using previously developed methods for B1+ efficiency and homogeneity and were designed for 2 ROIs: the entire fetus and the brain of the fetus. The SAR was evaluated in terms of the whole-body SAR, average SAR in the fetus and amniotic fluid, and maximum 10 g-averaged SAR in the mother, fetus, and amniotic fluid. RESULTS: The optimized dielectric pads increased the transmit efficiency up to 55% and increased the B1+ homogeneity in almost every tested configuration. The B1+ -normalized whole-body SAR was reduced by more than 31% for all body models. The B1+ -normalized local SAR was reduced in most scenarios by up to 62%. CONCLUSION: Simulations have shown that optimized high permittivity pads can reduce SAR in pregnant subjects at the 3rd, 7th, and 9th month of gestation, while improving the transmit field homogeneity in the fetus. However, significantly more work is required to demonstrate that fetal imaging is safe under standard operating conditions.


Assuntos
Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Desenho de Equipamento , Feminino , Humanos , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Modelos Anatômicos , Gravidez
3.
Magn Reson Med ; 81(5): 3370-3378, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30561797

RESUMO

PURPOSE: High-permittivity materials in the form of flexible "dielectric pads" have proved very useful for addressing RF inhomogeneities in high field MRI systems. Finding the optimal design of such pads is, however, a tedious task, reducing the impact of this technique. We present an easy-to-use software tool which allows researchers and clinicians to design dielectric pads efficiently on standard computer systems, for 7T neuroimaging and 3T body imaging applications. METHODS: The tool incorporates advanced computational methods based on field decomposition and model order reduction as a framework to efficiently evaluate the B1+ fields resulting from dielectric pads. The tool further incorporates optimization routines which can either optimize the position of a given dielectric pad, or perform a full parametric design. The optimization procedure can target either a single target field, or perform a sweep to explore the trade-off between homogeneity and efficiency of the B1+ field in a specific region of interest. The 3T version further allows for shifting of the imaging landmark to enable different imaging targets to be centered in the body coil. RESULTS: Example design results are shown for imaging the inner ear at 7T and for cardiac imaging at 3T. Computation times for all cases are approximately a minute per target field. CONCLUSION: The developed tool can be easily used to design dielectric pads for any 7T neuroimaging and 3T body imaging application within minutes. This bridges the gap between the advanced design methods and the practical application by the MR community.


Assuntos
Orelha Interna/diagnóstico por imagem , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Neuroimagem/instrumentação , Imagem Corporal Total , Algoritmos , Gráficos por Computador , Simulação por Computador , Eletricidade , Desenho de Equipamento , Humanos , Software , Interface Usuário-Computador
4.
Front Neurol ; 12: 698675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484102

RESUMO

The primary excitatory and inhibitory neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA) are thought to be involved in the response of the brain to changes in glycemia. Therefore, their reliable measurement is critical for understanding the dynamics of these responses. The concentrations of Glu and GABA, as well as glucose (Glc) in brain tissue, can be measured in vivo using proton (1H) magnetic resonance spectroscopy (MRS). Advanced MRS methodology at ultrahigh field allows reliable monitoring of these metabolites under changing metabolic states. However, the long acquisition times needed for these experiments while maintaining blood Glc levels at predetermined targets present many challenges. We present an advanced MRS acquisition protocol that combines commercial 7T hardware (Siemens Scanner and Nova Medical head coil), BaTiO3 dielectric padding, optical motion tracking, and dynamic frequency and B0 shim updates to ensure the acquisition of reproducibly high-quality data. Data were acquired with a semi-LASER sequence [repetition time/echo time (TR/TE) = 5,000/26 ms] from volumes of interest (VOIs) in the prefrontal cortex (PFC) and hypothalamus (HTL). Five healthy volunteers were scanned to evaluate the effect of the BaTiO3 pads on B 1 + distribution. Use of BaTiO3 padding resulted in a 60% gain in signal-to-noise ratio in the PFC VOI over the acquisition without the pad. The protocol was tested in six patients with type 1 diabetes during a clamp study where euglycemic (~100 mg/dL) and hypoglycemic (~50 mg/dL) blood Glc levels were maintained in the scanner. The new protocol allowed retention of all HTL data compared with our prior experience of having to exclude approximately half of the HTL data in similar clamp experiments in the 7T scanner due to subject motion. The advanced MRS protocol showed excellent data quality (reliable quantification of 11-12 metabolites) and stability (p > 0.05 for both signal-to-noise ratio and water linewidths) between euglycemia and hypoglycemia. Decreased brain Glc levels under hypoglycemia were reliably detected in both VOIs. In addition, mean Glu level trended lower at hypoglycemia than euglycemia for both VOIs, consistent with prior observations in the occipital cortex. This protocol will allow robust mechanistic investigations of the primary neurotransmitters, Glu and GABA, under changing glycemic conditions.

5.
J Magn Reson ; 320: 106835, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065392

RESUMO

High-permittivity dielectric pads, i.e., thin, flexible slabs, usually consisting of mixed ceramic powders and liquids, have been previously shown to increase the magnetic field at high and ultra high-fields in regions of low efficiency of transmit coils, thus improving the homogeneity of images. However, their material parameters can change with time, and some materials they contain are bio incompatible. This article presents an alternative approach replacing ceramic mixtures with a low-cost and stable artificial dielectric slab. The latter comprises a stack of capacitive grids realized using multiple printed-circuit boards. Results in this article show that the proposed artificial dielectric structure can obtain the same increase in the local transmit radiofrequency magnetic field distribution in a head phantom at 7 T as the conventional dielectric pad.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA