Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139291

RESUMO

The photoinduced crawling motion of crystals is a continuous motion that azobenzene molecular crystals exhibit under light irradiation. Such motion enables object manipulation at the microscale with a simple setup of fixed LED light sources. Transportation of nano-/micromaterials using photoinduced crawling motion has recently been reported. However, the details of the motion mechanism have not been revealed so far. Herein, we report visualization of the dynamics of fine particles in 4-(methylamino)azobenzene (4-MAAB) crystals under light irradiation via diffracted X-ray tracking (DXT). Continuously repeated melting and recrystallization of 4-MAAB crystals under light irradiation results in the flow of liquid 4-MAAB. Zinc oxide (ZnO) particles were introduced inside the 4-MAAB crystals to detect diffracted X-rays. The ZnO particles rotate with the flow of liquid 4-MAAB. By using white X-rays with a wide energy width, the rotation of each zinc oxide nanoparticle was detected as the movement of a bright spot in the X-ray diffraction pattern. It was clearly shown that the ZnO particles rotated increasingly as the irradiation light intensity increased. Furthermore, we also found anisotropy in the rotational direction of ZnO particles that occurred during the crawling motion of 4-MAAB crystals. It has become clear that the flow perpendicular to the supporting film of 4-MAAB crystals is enhanced inside the crystal during the crawling motion. DXT provides a unique means to elucidate the mechanism of photoinduced crawling motion of crystals.


Assuntos
Óxido de Zinco , Raios X , Compostos Azo/química , Rotação
2.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834298

RESUMO

The CCT/TRiC complex is a type II chaperonin that undergoes ATP-driven conformational changes during its functional cycle. Structural studies have provided valuable insights into the mechanism of this process, but real-time dynamics analyses of mammalian type II chaperonins are still scarce. We used diffracted X-ray tracking (DXT) to investigate the intramolecular dynamics of the CCT complex. We focused on three surface-exposed loop regions of the CCT1 subunit: the loop regions of the equatorial domain (E domain), the E and intermediate domain (I domain) juncture near the ATP-binding region, and the apical domain (A domain). Our results showed that the CCT1 subunit predominantly displayed rotational motion, with larger mean square displacement (MSD) values for twist (χ) angles compared with tilt (θ) angles. Nucleotide binding had a significant impact on the dynamics. In the absence of nucleotides, the region between the E and I domain juncture could act as a pivotal axis, allowing for greater motion of the E domain and A domain. In the presence of nucleotides, the nucleotides could wedge into the ATP-binding region, weakening the role of the region between the E and I domain juncture as the rotational axis and causing the CCT complex to adopt a more compact structure. This led to less expanded MSD curves for the E domain and A domain compared with nucleotide-absent conditions. This change may help to stabilize the functional conformation during substrate binding. This study is the first to use DXT to probe the real-time molecular dynamics of mammalian type II chaperonins at the millisecond level. Our findings provide new insights into the complex dynamics of chaperonins and their role in the functional folding cycle.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Animais , Raios X , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Nucleotídeos , Chaperonina com TCP-1/química , Conformação Proteica , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895101

RESUMO

Tubulin has been recently reported to form a large family consisting of various gene isoforms; however, the differences in the molecular features of tubulin dimers composed of a combination of these isoforms remain unknown. Therefore, we attempted to elucidate the physical differences in the molecular motility of these tubulin dimers using the method of measurable pico-meter-scale molecular motility, diffracted X-ray tracking (DXT) analysis, regarding characteristic tubulin dimers, including neuronal TUBB3 and ubiquitous TUBB5. We first conducted a DXT analysis of neuronal (TUBB3-TUBA1A) and ubiquitous (TUBB5-TUBA1B) tubulin dimers and found that the molecular motility around the vertical axis of the neuronal tubulin dimer was lower than that of the ubiquitous tubulin dimer. The results of molecular dynamics (MD) simulation suggest that the difference in motility between the neuronal and ubiquitous tubulin dimers was probably caused by a change in the major contact of Gln245 in the T7 loop of TUBB from Glu11 in TUBA to Val353 in TUBB. The present study is the first report of a novel phenomenon in which the pico-meter-scale molecular motility between neuronal and ubiquitous tubulin dimers is different.


Assuntos
Simulação de Dinâmica Molecular , Tubulina (Proteína) , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Raios X , Isoformas de Proteínas/genética , Neurônios/metabolismo
4.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569445

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in signal transduction at the neuromuscular junction (NMJ). Movement of the nAChR extracellular domain following agonist binding induces conformational changes in the extracellular domain, which in turn affects the transmembrane domain and opens the ion channel. It is known that the surrounding environment, such as the presence of specific lipids and proteins, affects nAChR function. Diffracted X-ray tracking (DXT) facilitates measurement of the intermolecular motions of receptors on the cell membranes of living cells, including all the components involved in receptor function. In this study, the intramolecular motion of the extracellular domain of native nAChR proteins in living myotube cells was analyzed using DXT for the first time. We revealed that the motion of the extracellular domain in the presence of an agonist (e.g., carbamylcholine, CCh) was restricted by an antagonist (i.e., alpha-bungarotoxin, BGT).


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Raios X , Ligantes , Domínios Proteicos , Fibras Musculares Esqueléticas/metabolismo
5.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834277

RESUMO

In 1998, the diffracted X-ray tracking (DXT) method pioneered the attainment of molecular dynamics measurements within individual molecules. This breakthrough revolutionized the field by enabling unprecedented insights into the complex workings of molecular systems. Similar to the single-molecule fluorescence labeling technique used in the visible range, DXT uses a labeling method and a pink beam to closely track the diffraction pattern emitted from the labeled gold nanocrystals. Moreover, by utilizing X-rays with extremely short wavelengths, DXT has achieved unparalleled accuracy and sensitivity, exceeding initial expectations. As a result, this remarkable advance has facilitated the search for internal dynamics within many protein molecules. DXT has recently achieved remarkable success in elucidating the internal dynamics of membrane proteins in living cell membranes. This breakthrough has not only expanded our knowledge of these important biomolecules but also has immense potential to advance our understanding of cellular processes in their native environment.


Assuntos
Proteínas de Membrana , Raios X , Difração de Raios X , Movimento (Física) , Radiografia
6.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498865

RESUMO

Membrane proteins play important roles in biological functions, with accompanying allosteric structure changes. Understanding intramolecular dynamics helps elucidate catalytic mechanisms and develop new drugs. In contrast to the various technologies for structural analysis, methods for analyzing intramolecular dynamics are limited. Single-molecule measurements using optical microscopy have been widely used for kinetic analysis. Recently, improvements in detectors and image analysis technology have made it possible to use single-molecule determination methods using X-rays and electron beams, such as diffracted X-ray tracking (DXT), X-ray free electron laser (XFEL) imaging, and cryo-electron microscopy (cryo-EM). High-speed atomic force microscopy (HS-AFM) is a scanning probe microscope that can capture the structural dynamics of biomolecules in real time at the single-molecule level. Time-resolved techniques also facilitate an understanding of real-time intramolecular processes during chemical reactions. In this review, recent advances in membrane protein dynamics visualization techniques were presented.


Assuntos
Proteínas de Membrana , Nanotecnologia , Microscopia Crioeletrônica , Cinética , Microscopia de Força Atômica/métodos
7.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216461

RESUMO

Membrane proteins change their conformations in response to chemical and physical stimuli and transmit extracellular signals inside cells. Several approaches have been developed for solving the structures of proteins. However, few techniques can monitor real-time protein dynamics. The diffracted X-ray tracking method (DXT) is an X-ray-based single-molecule technique that monitors the internal motion of biomolecules in an aqueous solution. DXT analyzes trajectories of Laue spots generated from the attached gold nanocrystals with a two-dimensional axis by tilting (θ) and twisting (χ). Furthermore, high-intensity X-rays from synchrotron radiation facilities enable measurements with microsecond-timescale and picometer-spatial-scale intramolecular information. The technique has been applied to various membrane proteins due to its superior spatiotemporal resolution. In this review, we introduce basic principles of DXT, reviewing its recent and extended applications to membrane proteins and living cells, respectively.


Assuntos
Ouro , Proteínas de Membrana , Ouro/química , Movimento (Física) , Nanotecnologia , Difração de Raios X , Raios X
8.
Membranes (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668103

RESUMO

Protein dynamics play important roles in biological functions, which accompany allosteric structure changes. Diffracted X-ray blinking (DXB) uses monochromatic X-rays and nanocrystal probes. The intramolecular motion of target proteins is analyzed from the intensity changes in detector signals at the diffraction rings. In contrast, diffracted X-ray tracking (DXT) elucidates molecular dynamics by analyzing the trajectories of Laue spots. In this study, we have developed a dual-labeling technique for DXB and DXT, allowing the simultaneous observation of motions at different domains in proteins. We identified zinc oxide (ZnO) crystals as promising candidates for the second labeling probes due to their excellent diffraction patterns, high chemical stability, and favorable binding properties with proteins. The diffraction spots from the ZnO crystals are sufficiently separated from those of gold, enabling independent motion analysis at different domains. Dual-labeling DXB was employed for the motion analysis of the 5-HT2A receptor in living cells. Simultaneous motion recording of the N-terminus and the second extracellular loop demonstrated ligand-induced motion suppression at both domains. The dual-labeling DXT technique demonstrated a capsaicin-induced peak shift in the two-dimensional motion maps at the N-terminus of the TRPV1 protein, but the peak shift was not obvious in the C-terminus. The capsaicin-induced motion modulation was recovered by the addition of the competitive inhibitor AMG9810.

9.
Biochem Biophys Rep ; 38: 101712, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38903159

RESUMO

Single-molecule intramolecular dynamics were successfully measured for three variants of SARS-CoV-2 spike protein, alpha: B.1.1.7, delta: B.1.617, and omicron: B.1.1.529, with a time resolution of 100 µs using X-rays. The results were then compared with respect to the magnitude and directions of motions for the three variants. The largest 3-D intramolecular movement was observed for the omicron variant irrespective of ACE2 receptor binding. A more detailed analysis of the intramolecular motions revealed that the distribution state of intramolecular motion for the three variants was completely different with and without ACE2 receptor binding. The molecular dynamics for the trimeric spike protein of the omicron variant increased when ACE2 binding occurred. At that time, the diffusion constant increased from 71.0 [mrad2/ms] to 91.1 [mrad2/ms].

10.
J Synchrotron Radiat ; 20(Pt 5): 801-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955045

RESUMO

Combined X-ray photon correlation spectroscopy (XPCS) and diffracted X-ray tracking (DXT) measurements of carbon-black nanocrystals embedded in styrene-butadiene rubber were performed. From the intensity fluctuation of speckle patterns in a small-angle scattering region (XPCS), dynamical information relating to the translational motion can be obtained, and the rotational motion is observed through the changes in the positions of DXT diffraction spots. Graphitized carbon-black nanocrystals in unvulcanized styrene-butadiene rubber showed an apparent discrepancy between their translational and rotational motions; this result seems to support a stress-relaxation model for the origin of super-diffusive particle motion that is widely observed in nanocolloidal systems. Combined measurements using these two techniques will give new insights into nanoscopic dynamics, and will be useful as a microrheology technique.

11.
Membranes (Basel) ; 13(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37623769

RESUMO

The transient receptor potential vanilloid type 1 (TRPV1) is a multimodal receptor which responds to various stimuli, including capsaicin, protons, and heat. Recent advances in cryo-electron microscopy have revealed the structures of TRPV1. However, due to the large size of TRPV1 and its structural complexity, the detailed process of channel gating has not been well documented. In this study, we applied the diffracted X-ray tracking (DXT) technique to analyze the intracellular domain dynamics of the TRPV1 protein. DXT enables the capture of intramolecular motion through the analysis of trajectories of Laue spots generated from attached gold nanocrystals. Diffraction data were recorded at two different frame rates: 100 µs/frame and 12.5 ms/frame. The data from the 100 µs/frame recording were further divided into two groups based on the moving speed, using the lifetime filtering technique, and they were analyzed separately. Capsaicin increased the slope angle of the MSD curve of the C-terminus in 100 µs/frame recording, which accompanied a shifting of the rotational bias toward the counterclockwise direction, as viewed from the cytoplasmic side. This capsaicin-induced fluctuation was not observed in the 12.5 ms/frame recording, indicating that it is a high-frequency fluctuation. An intrinsiccounterclockwise twisting motion was observed in various speed components at the N-terminus, regardless of the capsaicin administration. Additionally, the competitive inhibitor AMG9810 induced a clockwise twisting motion, which is the opposite direction to capsaicin. These findings contribute to our understanding of the activation mechanisms of the TRPV1 channel.

12.
Biochem Biophys Rep ; 29: 101224, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146137

RESUMO

The dynamic properties of protein molecules are involved in the relationship between their structure and function. Time-resolved X-ray observation enables capturing the structures of biomolecules with picometre-scale precision. However, this technique has yet to be implemented in living animals. Here, we examined diffracted X-ray blinking (DXB) and diffracted X-ray tracking (DXT) to observe the dynamics of a protein located on intestinal cells in adult Caenorhabditis elegans. This in vivo tissue-specific DXB was examined at temperatures from 20 °C to -10 °C for a recombinant ice-binding protein from Antarctomyces psychrotrophicus (AnpIBP) connected with the cells through a transmembrane CD4 protein equipped with a glycine-serine linker. AnpIBP inhibits ice growth at subzero temperatures by binding to ice crystals. We found that the rotational motion of AnpIBP decreases at -10 °C. In contrast, the motion of the AnpIBP mutant, which has a defective ice-binding ability, did not decrease at -10 °C. The twisting and tilting motional speeds of AnpIBPs measured above 5 °C by DXT were always higher than those of the defective AnpIBP mutant. These results suggest that wild-type AnpIBP is highly mobile in solution, and it is halted at subzero temperatures through ice binding. DXB and DXT allow for exploring protein behaviour in live animals with subnano resolution precision.

13.
Biophys Chem ; 278: 106669, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34416518

RESUMO

Diffracted X-ray tracking (DXT) is one of methods for the real-time evaluation of protein structural dynamics by detecting the movement of a gold-nanocrystal attached to a target protein. However, one of the technical concerns is the size of the gold-nanocrystals, which are larger than the protein. In our previous results of mean square angular displacement curves in DXT analysis, dynamical movements of the DNA-binding protein, c-Myb R2R3, were observed in only one population in either DNA-unbound or -bound state, and was found to decrease upon DNA binding. In this study, c-Myb R2R3 dynamical movements were re-evaluated with a low density of the protein immobilized on the DXT substrate, to decrease the possibility that the gold-nanocrystals attached to more than one R2R3 molecule. We observed two dynamical moving populations in the DNA-bound state, which could be classified due to electrostatic attraction and repulsion between the DNA-protein complexes, and determined the apparent angular diffusion constant, which was similar to the value calculated in our previous study. We showed more real movement of the protein could be observed by lowering the immobilization density of the protein.


Assuntos
Proteínas de Ligação a DNA , Ouro , DNA/química , Proteínas de Ligação a DNA/química , Ouro/química , Difração de Raios X , Raios X
14.
Biochim Biophys Acta Gen Subj ; 1864(2): 129361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31077793

RESUMO

BACKGROUND: Proteins change their conformation depending on function. Although a vast number of static pictures of proteins have been accumulated, information regarding their dynamics in function is limited. Diffracted X-ray tracking (DXT) is a good candidate to obtain the missing data. SCOPE OF REVIEW: A gold nanocrystal was attached to the target protein as a probe and the motion of the X-ray diffraction spots from the crystal corresponded to the motion of the target. Although it has advantages of high temporal (sub-millisecond) and spatial (approximately 0.1°) resolutions, it is not extensively utilized. This review focused on its effective application from a user's perspective. We also present an example with the KcsA channel and the status of recent developments to show the future possibilities of the method. MAJOR CONCLUSIONS: DXT is a powerful method to investigate intramolecular structural changes. For instance, in the KcsA channel, the method revealed a wave of conformational changes transmitted from the gate region to the end of the molecule. The method is continuously being developed, and users can choose an appropriate measurement system depending on the condition of their sample. GENERAL SIGNIFICANCE: Revealing the protein structural changes with respect to function is an important frontier. The most distinctive feature of the DXT method is that both high temporal and spatial resolutions are achievable, and it is possible to track the motions of multiple molecules at the same time. This feature is an advantage for screening molecules associated with the target proteins (e.g., ligands and medicines).


Assuntos
Movimento (Física) , Proteínas/química , Difração de Raios X , Ouro/química , Concentração de Íons de Hidrogênio , Íons , Ligantes , Nanopartículas Metálicas/química , Nanotecnologia , Canais de Potássio/química , Conformação Proteica , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
15.
J Mol Biol ; 426(2): 447-59, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24120682

RESUMO

Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1-2s after mixing. Only in the presence of K(+) that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K(+). Without K(+), a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K(+), a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Thermococcus/enzimologia , Substituição de Aminoácidos , Fluorometria , Chaperoninas do Grupo II/genética , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA