Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Syst Biol ; 73(3): 594-612, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38554255

RESUMO

Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, and climate) or biotic factors (traits and interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative, and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts was critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.


Assuntos
Evolução Biológica , Clima , Ecossistema , Flores , Filogenia , Flores/fisiologia , Flores/classificação , Flores/genética , Biodiversidade
2.
J Evol Biol ; 36(8): 1090-1101, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37322612

RESUMO

Given the diverse nature of traits involved in territorial defence, they may respond to different selective pressures and then exhibit distinct patterns of evolution. These selective pressures also may cause territorial behaviour to be associated with environmental and morphological variables. Such associations, however, have mostly been studied at the intraspecific level, being phylogenetic analyses of territoriality in a broad taxonomic framework rare in the literature. We used the anuran subfamily Hylinae to test (1) whether two territorial-behaviour traits with different levels of aggression-territorial call and physical combat-are evolutionarily more labile than a morphological trait used in physical combat-the spine-shaped prepollex; (2) whether reproduction in lentic waters and phytotelmata, as well as resource scarcity, might favour the occurrence of territoriality; (3) if physical combat is more important than territorial call for the evolution of body size and sexual size dimorphism and (4) the relationships between territorial-behaviour traits and lineage diversification. We mainly used the literature to build two datasets with different levels of certainty. Territorial-behaviour traits exhibited intermediate levels of phylogenetic signal in Hylinae, whereas the phylogenetic signal for the presence of the spine-shaped prepollex was strong. We found support for the hypothesis that reproduction in lentic water favours the occurrence of territorial behaviour, because the expression of territorial-behaviour traits was more associated with reproduction in lentic than in lotic waters. Territorial-behaviour traits were not correlated with annual precipitation nor with habitat complexity. Body size and sexual size dimorphism were not correlated with the presence of territorial call nor with physical combat. We identified negative correlations between diversification rates and physical combat. Relationships of territorial call and physical combat with diversification rates suggest that these territorial behaviours influence evolutionary processes in different ways.


Assuntos
Agressão , Territorialidade , Animais , Filogenia , Ecossistema , Anuros/genética
3.
BMC Plant Biol ; 22(1): 32, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027008

RESUMO

BACKGROUND: The East Asian subtropical evergreen broad-leaved forests (EBLFs) harbor remarkable biodiversity. However, their historical assembly remains unclear. To gain new insights into the assembly of this biome, we generated a molecular phylogeny of one of its essential plant groups, the tribe Perseeae (Lauraceae). RESULTS: Our plastid tree topologies were robust to analyses based on different plastid regions and different strategies for data partitioning, nucleotide substitution saturation, and gap handling. We found that tribe Perseeae comprised six major clades and began to colonize the subtropical EBLFs of East Asia in the early Miocene. The diversification rates of tribe Perseeae accelerated twice in the late Miocene. CONCLUSIONS: Our findings suggest that the intensified precipitation in East Asia in the early Miocene may have facilitated range expansions of the subtropical EBLFs and establishment of tribe Perseeae within this biome. By the late Miocene, species assembly and diversification within the EBLFs had become rapid.


Assuntos
Biodiversidade , Evolução Biológica , Lauraceae/genética , Filogenia , Filogeografia , Plastídeos/genética , Árvores/genética , Ásia Oriental , Florestas
4.
Mol Ecol ; 31(8): 2453-2474, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146829

RESUMO

Changes in life history traits are often considered speciation triggers and can have dramatic effects on the evolutionary history of a lineage. Here, we examine the consequences of changes in two life history traits, host-type and phoresy, in the hypermetamorphic blister beetles, Meloidae. Subfamilies Nemognathinae and Meloinae exhibit a complex life cycle involving multiple metamorphoses and parasitoidism. Most genera and tribes are bee-parasitoids, and include phoretic or nonphoretic species, while two tribes feed on grasshopper eggs. These different life strategies are coupled with striking differences in species richness among clades. We generated a mitogenomic phylogeny for Nemognathinae and Meloinae, confirming the monophyly of these two clades, and used the dated phylogeny to explore the association between diversification rates and changes in host specificity and phoresy, using state-dependent speciation and extinction (SSE) models that include the effect of hidden traits. To account for the low taxon sampling, we implemented a phylogenetic-taxonomic approach based on birth-death simulations, and used a Bayesian framework to integrate parameter and phylogenetic uncertainty. Results show that the ancestral hypermetamorphic Meloidae was a nonphoretic bee-parasitoid, and that transitions towards a phoretic bee-parasitoid and grasshopper parasitoidism occurred multiple times. Nonphoretic bee-parasitoid lineages exhibit significantly higher relative extinction and lower diversification rates than phoretic bee-and grasshopper-parasitoids, but no significant differences were found between the latter two strategies. This suggests that Orthopteran host shifts and phoresy contributed jointly to the evolutionary success of the parasitoid meloidae. We also demonstrate that SSE models can be used to identify hidden traits coevolving with the focal trait in driving a lineage's diversification dynamics.


Assuntos
Besouros , Animais , Teorema de Bayes , Evolução Biológica , Besouros/genética , Especiação Genética , Fenótipo , Filogenia
5.
Proc Biol Sci ; 288(1962): 20211575, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34727720

RESUMO

Evolutionary radiations have intrigued biologists for more than a century, yet our understanding of the drivers of radiating diversification is still limited. We investigate the roles of environmental and species-intrinsic factors in driving the rapid radiation of Saussurea (Asteraceae) by deploying a number of palaeoenvironment-, diversity- and trait-dependent models, as well as ecological distribution data. We show that three main clades of Saussurea began to diversify in the Miocene almost simultaneously, with increasing diversification rates (DRs) negatively dependent on palaeotemperature but not dependent on species diversity. Our trait-dependent models detect some adaptive morphological innovations associated with DR shifts, while indicating additional unobserved traits are also likely driving diversification. Accounting for ecological niche data, we further reveal that accelerations in DRs are correlated with niche breadth and the size of species' range. Our results point out a macroevolutionary scenario where both adaptive morphological evolution and ecological opportunities provided by palaeoenvironmental fluctuations triggered an exceptionally radiating diversification. Our study highlights the importance of integrating phylogenomic, morphological, ecological and model-based approaches to illustrate evolutionary dynamics of lineages in biodiversity hotspots.


Assuntos
Asteraceae , Saussurea , Biodiversidade , Evolução Biológica , Ecossistema , Filogenia , Saussurea/genética
6.
Mol Phylogenet Evol ; 159: 107087, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33545273

RESUMO

The long-term geological stability of aquatic habitats has been demonstrated to be a determinant in the evolution of macroinvertebrate fauna, with species in running (lotic) waters having lower dispersal abilities, smaller ranges and higher gene flow between populations than species in standing (lentic) environments. Lotic species have been hypothesized to be more specialised, but the diversification dynamics of both habitat types have not been studied in detail. Using a speciose lineage of water beetles we test here whether diversification rates are related to the habitat preference of the species and its consequences on turnover, which we expect to be higher for lotic taxa. Moreover, we tested whether life in lotic environments is acting as an evolutionary dead-end as it is considered an ecological specialisation. We built a comprehensive molecular phylogeny with 473 terminals representing 421 of the 689 known species of the tribe Hydroporini (Coleoptera, Dytiscidae), using a combination of sequences from four mitochondrial and two nuclear genes plus 69 mitogenomes obtained with NGS. We found a general pattern of gradual acceleration of diversification rate with time, with 2-3 significant diversification shifts. However, habitat is not the main factor driving diversification in Hydroporini based on SecSSE analyses. The most recent common ancestor of Hydroporini was reconstructed as a lotic species, with multiple shifts to lentic environments. Most frequent transitions were estimated from lentic and lotic habitats to the category "both", followed by transitions from lotic to lentic and lentic to lotic respectively, although with very similar rates. Contrary to expectations, we found little evidence for differences in diversification dynamics between habitats, with lotic environments clearly not acting as evolutionary dead-ends in Hydroporini.


Assuntos
Evolução Biológica , Besouros/classificação , Ecossistema , Filogenia , Animais , Organismos Aquáticos/genética , Núcleo Celular/genética , Fluxo Gênico , Genes Mitocondriais , Água
7.
Proc Biol Sci ; 287(1919): 20192546, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31964242

RESUMO

The diversification dynamics of the Australian temperate flora remains poorly understood. Here, we investigate whether differences in plant richness in the southwest Australian (SWA) biodiversity hotspot and southeast Australian (SEA) regions of the Australian continent can be attributed to higher net diversification, more time for species accumulation, or both. We assembled dated molecular phylogenies for the 21 most species-rich flowering plant families found across mesic temperate Australia, encompassing both SWA and SEA regions, and applied a series of diversification models to investigate responses across different groups and timescales. We show that the high richness in SWA can be attributed to a higher net rate of lineage diversification and more time for species accumulation. Different pulses of diversification were retrieved in each region. A decrease in diversification rate across major flowering plant lineages at the Eocene-Oligocene boundary (ca 34 Ma) was witnessed in SEA but not in SWA. Our study demonstrates the importance of historical diversification pulses and differential responses to global events as drivers of present-day diversity. More broadly, we show that diversity within the SWA biodiversity hotspot is not only the result of recent radiations, but also reflects older events over the history of this planet.


Assuntos
Biodiversidade , Magnoliopsida , Austrália , Evolução Biológica , Extinção Biológica , Especiação Genética , Filogenia
8.
New Phytol ; 226(4): 1198-1212, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31609470

RESUMO

The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.


Assuntos
Quercus , Fluxo Gênico , Genômica , Filogenia , Quercus/genética , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 142: 106659, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639525

RESUMO

A major goal of phylogenetic systematics is to understand both the patterns of diversification and the processes by which these patterns are formed. Few studies have focused on the ancient, species-rich Magnoliales clade and its diversification pattern. Within Magnoliales, the pantropically distributed Annonaceae are by far the most genus-rich and species-rich family-level clade, with c. 110 genera and c. 2,400 species. We investigated the diversification patterns across Annonaceae and identified traits that show varied associations with diversification rates using a time-calibrated phylogeny of 835 species (34.6% sampling) and 11,211 aligned bases from eight regions of the plastid genome (rbcL, matK, ndhF, psbA-trnH, trnL-F, atpB-rbcL, trnS-G, and ycf1). Twelve rate shifts were identified using BAMM: in Annona, Artabotrys, Asimina, Drepananthus, Duguetia, Goniothalamus, Guatteria, Uvaria, Xylopia, the tribes Miliuseae and Malmeeae, and the Desmos-Dasymaschalon-Friesodielsia-Monanthotaxis clade. TurboMEDUSA and method-of-moments estimator analyses showed largely congruent results. A positive relationship between species richness and diversification rate is revealed using PGLS. Our results show that the high species richness in Annonaceae is likely the result of recent increased diversification rather than the steady accumulation of species via the 'museum model'. We further explore the possible role of selected traits (habit, pollinator trapping, floral sex expression, pollen dispersal unit, anther septation, and seed dispersal unit) in shaping diversification patterns, based on inferences of BiSSE, MuSSE, HiSSE, and FiSSE analyses. Our results suggest that the liana habit, the presence of circadian pollinator trapping, androdioecy, and the dispersal of seeds as single-seeded monocarp fragments are closely correlated with higher diversification rates; pollen aggregation and anther septation, in contrast, are associated with lower diversification rates.


Assuntos
Annonaceae/classificação , Annonaceae/genética , Biodiversidade , Genoma de Planta , Filogenia , Plastídeos/genética
10.
J Evol Biol ; 33(12): 1758-1769, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047407

RESUMO

Parasitism is often invoked as a factor explaining the variation in diversification rates across the tree of life, while also representing up to half of Earth's diversity. Yet, patterns and processes of parasite diversification remain mostly unknown. In this study, we assess the patterns of parasite diversification and specifically determine the role of life-history traits (i.e. life cycle complexity and host range) and major coevolutionary events in driving diversification across eight phylogenetic datasets spanning taxonomically different parasite groups. Aware of the degree of incomplete sampling among all parasite phylogenies, we also tested the impact of sampling bias on estimates of diversification. We show that the patterns and rates of parasite diversification differ among taxa according to life cycle complexity and to some extent major host transitions. Only directly transmitted parasites were found to be influenced by an effect of major host transitions on diversification rates. Although parasitism may be a main factor responsible for heterogeneity in diversification among the tree of life, the high degree of incomplete parasite phylogenies remains an obstacle when modelling diversification dynamics. Nevertheless, we provide the first comparative test of parasite diversification, revealing some consistent patterns and insight into the processes that shape it.


Assuntos
Evolução Biológica , Parasitos/genética , Animais , Especificidade de Hospedeiro
11.
Ecol Lett ; 22(4): 624-633, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714311

RESUMO

The importance of ecologically mediated divergent selection in accelerating trait evolution has been poorly studied in the most species-rich biome of the planet, the continental Neotropics. We performed macroevolutionary analyses of trait divergence and diversification rates across closely related pairs of Andean and Amazonian passerine birds, to assess whether the difference in elevational range separating species pairs - a proxy for the degree of ecological divergence - influences the speed of trait evolution and diversification rates. We found that elevational differentiation is associated with faster divergence of song frequency, a trait important for pre-mating isolation, and several morphological traits, which may contribute to extrinsic post-mating isolation. However, elevational differentiation did not increase recent speciation rates, possibly due to early bursts of diversification during the uplift of the eastern Andes followed by a slow-down in speciation rate. Our results suggest that ecological differentiation may speed up trait evolution, but not diversification of Neotropical birds.


Assuntos
Altitude , Evolução Biológica , Aves , Ecossistema , Especiação Genética , Animais , Aves/genética , Aves/fisiologia , Ecologia , Fenótipo , Filogenia
12.
Mol Phylogenet Evol ; 139: 106521, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152779

RESUMO

Ciliophora is one of the most diverse lineages of unicellular eukaryotes. Nevertheless, a robust timescale including all main lineages and employing properly identified ciliate fossils as primary calibrations is lacking. Here, we inferred a time-calibrated multigene phylogeny of Ciliophora evolution, and we used this timetree to investigate the rates and patterns of lineage diversification through time. We implemented a two-step analytical approach that favored both gene and taxon sampling, reducing the uncertainty of time estimates and yielding narrower credibility intervals on the ribosomal-derived chronogram. We estimate the origin of Ciliophora at 1143 Ma, which is substantially younger than previously proposed ages, and the huge diversity explosion occurred during the Paleozoic. Among the current groups recognized as classes, Spirotrichea diverged earlier, its origin was dated at ca. 850 Ma, and Protocruziea was the younger class, with crown age estimated at 56 Ma. Macroevolutionary analysis detected a significant rate shift in diversification dynamics in the spirotrichean clade Hypotrichia + Oligotrichia + Choreotrichia, which had accelerated speciation rate ca. 570 Ma, during the Ediacaran-Cambrian transition. For all crown lineages investigated, speciation rates declined through time, whereas extinction rates remained low and relatively constant throughout the evolutionary history of ciliates.


Assuntos
Cilióforos/classificação , Cilióforos/genética , Especiação Genética , Filogenia , Fósseis
13.
Mol Phylogenet Evol ; 135: 203-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30880144

RESUMO

Large-scale changes in chromosome number have been associated with diversification rate shifts in many lineages of plants. For instance, several ancient rounds of polyploidization events have been inferred to promote genomic differentiation and/or isolation and, consequently, angiosperm diversification. Dysploidy, although less studied, has been suggested to also play an important role in angiosperm diversification. In this article, we aim to elucidate the role of chromosomal rearrangements on lineage diversification by analyzing a new comprehensive sedge (Cyperaceae) phylogenetic tree. Our null hypothesis is that the mode and tempo of chromosome evolution are to be homogeneous across the complete phylogeny. In order to discern patterns of diversification shifts and chromosome number changes within the family tree, we tested clade-specific chromosome evolution models for several subtrees according to previously reported increments of diversification rates. Results show that a complex, heterogeneous model composed of different clade-specific chromosome evolution transitions are significantly supported against the null hypothesis of a model with no chromosome number model transition events along the phylogeny. This could suggest a link between diversification and changes in chromosome number evolution although other possibilities are not discarded. Our methodological approach may allow identifying different patterns of chromosome evolution, as found for Cyperaceae, for other lineages at different evolutionary levels.


Assuntos
Cromossomos de Plantas/genética , Cyperaceae/genética , Evolução Molecular , Modelos Biológicos , Filogenia
14.
Mol Phylogenet Evol ; 141: 106626, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526848

RESUMO

Studies about the drivers of angiosperm clade diversifications have revealed how the environment continuously alters the species chances to adapt or to go extinct. This process depends on complex interactions between abiotic and biotic factors, conditioned to the geological and tectonic settings, the genetic variability of species and the rate at which speciation occurs. In this study, we aim to elucidate the timing of diversification of the Lithospermeae, the second largest tribe within Boraginaceae, and to identify the possible morphological and ecological characters associated with shifts in diversification rates of the most species-rich clades. Lithospermeae includes ca. 470 species and 26 genera, among which are some of the largest genera of the family such as Onosma (150 spp.), Echium (60 spp.), and Lithospermum (80 spp.). An exhaustive study of the whole clade is not available to date and its evolutionary history and diversification rates are incompletely known. In the present study, we provide the most comprehensive phylogeny of the group so far, sampling 242 species and all 26 genera. We found that crown-groups and diversification rates of Lithospermeae largely date back to the Mid-Miocene, with high diversification rates in the largest genera, though only significantly high in Onosma. Our analysis fails to associate any of the functional or morphological traits considered with significant shifts in diversification rates. The timing of the diversification of the species-rich clades corresponds with Miocene tectonic events and global climate changes increasing aridity across Eurasia and western North America. These results suggest a causal link between known ecological features of Lithospermeae (i.e., pre-adaptation to arid, open habitats, and mineral soils) and their diversification. Future studies should expand the sampling of individual subclades and detailed functional analyses to identify the contribution of adaptations to arid conditions and pollinator shifts.


Assuntos
Biodiversidade , Boraginaceae/classificação , Filogenia , Filogeografia , Sequência de Bases , Boraginaceae/anatomia & histologia , DNA de Cloroplastos/genética , DNA Espaçador Ribossômico/genética , América do Norte , Especificidade da Espécie , Fatores de Tempo
15.
Mol Phylogenet Evol ; 133: 67-81, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30594734

RESUMO

Tribe Euterpeae is an economically and ecologically important group of Neotropical palms (Arecaceae). Some species are hyperdominant in the Neotropics, and many constitute a good source of revenue. To reconstruct the biogeographical history and diversification of the Euterpeae, we inferred a robust dated molecular phylogenetic hypothesis including 82% of the species sequenced for five DNA regions (trnD-trnT, CISP4, WRKY6, RPB2, and PHYB). Ancestral range was estimated using all models available in BioGeoBEARS and Binary State Speciation and Extinction analysis was used to evaluate the association of biome and inflorescence type with diversification rates. All intergeneric relationships were resolved providing insight on the taxonomic controversy of Jessenia, Euterpe and Prestoea. Three widely distributed Neotropical species were non-monophyletic, inviting a revision of species circumscriptions. The Euterpeae started its diversification in the mid Eocene (40 Mya), with most species-level divergence events occurring in the last 10 million years. Four colonization events from Central to South America were inferred. Different diversification rates were associated with biomes. Lowland rainforest was inferred as the ancestral biome of Euterpeae, attesting to the importance of lowland adapted lineages on the assembly of the montane flora. The two-fold higher speciation rate for montane taxa (compared with lowland rainforest taxa) was contemporaneous to the Andean orogenic uplift. The specialized beetle pollination of Oenocarpus with its hippuriform (horsetail shape) inflorescence was not associated with diversification rates in Euterpeae.


Assuntos
Arecaceae/classificação , Arecaceae/genética , América Central , Ecossistema , Filogenia , Filogeografia , Floresta Úmida , América do Sul
16.
Mol Phylogenet Evol ; 133: 176-188, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30639765

RESUMO

The genus Agave sensu lato contains ca. 211 described species, many of which are considered keystone species because of their ecological dominance and the quantity of resources they provide with their massive, nectar-rich inflorescences. The large diversity of Agave species has been hypothesized as being related to their reproductive strategy (predominantly monocarpic) and diverse pollinators (e.g., bats, hummingbirds, hawkmoths). In particular, Agave species provide resources that a few genera of nectar feeding bats from the subfamily Glosophaginae are dependent upon. To explore a possible coevolutionary relationship between Agave and the bat species that pollinate them, we calibrated molecular phylogenies of both groups and looked for a correlation in their dates of divergence. One coding and two non-coding regions of the chloroplast genome were sequenced from 49 species of the Agavoideae (Asparagaceae), and the mitochondrial gene Cyt-b and nuclear coding gene RAG2 were either sequenced or obtained from gene bank for 120 Phyllostomid bats. Results from the analyses indicate that Agave sensu lato is a young genus (estimated crown age 2.7-8.5/stem age 4.6-12.3 Ma), with an increasing diversification rate, and the highest speciation rate among Agavoideae's clades. The origin of the Glossophaginae bats (stem age 20.3-23.5 Ma) occurred prior to the stem age of Agave sensu lato, while the origin of the current pollinators of Agave species, members of the genera Glossophaga, Leptonycteris, Anoura, Choeronyscus, Musonycteris and Choeronycteris, was estimated to be around 6.3-16.2 Ma, overlapping with the stem age of Agave sensu lato, supporting the hypothesis of diffuse coevolution.


Assuntos
Agave/parasitologia , Evolução Biológica , Quirópteros/fisiologia , Polinização , Animais , Sequência de Bases , Teorema de Bayes , Quirópteros/classificação , Filogenia , Fatores de Tempo
17.
Am J Bot ; 106(3): 438-452, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30861101

RESUMO

PREMISE OF THE STUDY: Long-distance dispersal (LDD) syndromes, especially endozoochory, facilitate plant colonization of new territories that trigger diversification. However, few studies have analyzed how epizoochorous fruits influence both range distribution and diversification rates. We examined the evolutionary history of a hyperdiverse clade of Boraginaceae (subfamily Cynoglossoideae, eight tribes, ~60 genera, ~1100 species) and the evolution of fruit traits. We evaluated the evolutionary history of diaspore syndromes correlated with geographic distribution and diversification rates over time. METHODS: Plastid DNA regions and morphological traits associated with dispersal syndromes were analyzed for 71 genera (226 species). We employed trait-dependent diversification analysis (HiSSE) and biogeographic reconstruction (Lagrange) using a time-calibrated phylogeny. KEY RESULTS: Our results indicate that (1) the earliest divergence events in Cynoglossoideae occurred in the central-northeastern Palearctic during the Paleogene (early to middle Eocene); (2) an epizoochorous trait (specialized hooks named glochids) is ancestral and has been maintained long term; and (3) glochids are correlated with increased diversification rates in two distantly related clades (Rochelieae and Cynoglossinae). Rapid speciation occurred for these two groups in the same area (central-eastern Palearctic) and same period (Oligocene-Miocene: Rochelieae, 30.82-13.69 mya; Cynoglossinae, 33.10-15.21 mya). Lower diversification rates were inferred for the remaining four glochid-bearing clades. CONCLUSIONS: One more example of "biogeographic congruence" in angiosperms is supported by a shared geographic (central-northeastern Palearctic) and temporal (28.60-21.59 mya, late Oligocene) opportunity window for two main clades' diversification. Epizoochorous traits (fruit glochids) had an effect in higher diversification rates only with the joint effect of other unmeasured factors.


Assuntos
Evolução Biológica , Boraginaceae/fisiologia , Características de História de Vida , Dispersão Vegetal , Especiação Genética
18.
Chromosome Res ; 26(3): 139-152, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29043597

RESUMO

Despite most of the cytogenetic research is focused on monocentric chromosomes, chromosomes with kinetochoric activity localized in a single centromere, several studies have been centered on holocentric chromosomes which have diffuse kinetochoric activity along the chromosomes. The eukaryotic organisms that present this type of chromosomes have been relatively understudied despite they constitute rather diversified species lineages. On the one hand, holocentric chromosomes may present intrinsic benefits (chromosome mutations such as fissions and fusions are potentially neutral in holocentrics). On the other hand, they present restrictions to the spatial separation of the functions of recombination and segregation during meiotic divisions (functions that may interfere), separation that is found in monocentric chromosomes. In this study, we compare the diversification rates of all known holocentric lineages in animals and plants with their most related monocentric lineages in order to elucidate whether holocentric chromosomes constitute an evolutionary advantage in terms of diversification and species richness. The results showed that null hypothesis of equal mean diversification rates cannot be rejected, leading us to surmise that shifts in diversification rates between holocentric and monocentric lineages might be due to other factors, such as the idiosyncrasy of each lineage or the interplay of evolutionary selections with the benefits of having either monocentric or holocentric chromosomes.


Assuntos
Artrópodes/genética , Cromossomos de Insetos/genética , Cromossomos de Plantas/genética , Evolução Molecular , Magnoliopsida/genética , Nematoides/genética , Animais
19.
Proc Natl Acad Sci U S A ; 113(34): 9569-74, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27512038

RESUMO

Bayesian analysis of macroevolutionary mixtures (BAMM) has recently taken the study of lineage diversification by storm. BAMM estimates the diversification-rate parameters (speciation and extinction) for every branch of a study phylogeny and infers the number and location of diversification-rate shifts across branches of a tree. Our evaluation of BAMM reveals two major theoretical errors: (i) the likelihood function (which estimates the model parameters from the data) is incorrect, and (ii) the compound Poisson process prior model (which describes the prior distribution of diversification-rate shifts across branches) is incoherent. Using simulation, we demonstrate that these theoretical issues cause statistical pathologies; posterior estimates of the number of diversification-rate shifts are strongly influenced by the assumed prior, and estimates of diversification-rate parameters are unreliable. Moreover, the inability to correctly compute the likelihood or to correctly specify the prior for rate-variable trees precludes the use of Bayesian approaches for testing hypotheses regarding the number and location of diversification-rate shifts using BAMM.


Assuntos
Coevolução Biológica , Extinção Biológica , Especiação Genética , Filogenia , Baleias/classificação , Animais , Teorema de Bayes , Biodiversidade , Funções Verossimilhança , Distribuição de Poisson , Baleias/genética
20.
BMC Evol Biol ; 18(1): 141, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231864

RESUMO

BACKGROUND: Microhabitat changes are thought to be among the main drivers of diversification. However, this conclusion is mostly based on studies on vertebrates. Here, we investigate the influence of microhabitat on diversification rates in pholcid spiders (Araneae, Pholcidae). Diversification analyses were conducted in the framework of the largest molecular phylogeny of pholcid spiders to date based on three nuclear and three mitochondrial loci from 600 species representing more than 85% of the currently described pholcid genera. RESULTS: Assessments of ancestral microhabitat revealed frequent evolutionary change. In particular, within the largest subfamily Pholcinae, numerous changes from near-ground habitats towards leaves and back were found. In general, taxa occupying leaves and large sheltered spaces had higher diversification rates than ground-dwelling taxa. Shifts in speciation rate were found in leaf- and space-dwelling taxa. CONCLUSIONS: Our analyses result in one of the most comprehensive phylogenies available for a major spider family and provide a framework for any subsequent studies of pholcid spider biology. Diversification analyses strongly suggest that microhabitat is an important factor influencing diversification patterns in pholcid spiders.


Assuntos
Biodiversidade , Aranhas/classificação , Animais , Modelos Teóricos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA