Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2300673120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311002

RESUMO

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated. Here we combine genomics, experiments, and evolutionary modeling to elucidate the processes maintaining an inversion polymorphism associated with the use of a challenging host plant (Redwood trees) in Timema stick insects. We show that the inversion is maintained by a combination of processes, finding roles for life-history trade-offs, heterozygote advantage, local adaptation to different hosts, and gene flow. We use models to show how such multi-layered regimes of balancing selection and gene flow provide resilience to help buffer populations against the loss of genetic variation, maintaining the potential for future evolution. We further show that the inversion polymorphism has persisted for millions of years and is not a result of recent introgression. We thus find that rather than being a nuisance, the complex interplay of evolutionary processes provides a mechanism for the long-term maintenance of genetic variation.


Assuntos
Aclimatação , Inversão Cromossômica , Animais , Inversão Cromossômica/genética , Fluxo Gênico , Genômica , Heterozigoto , Neópteros
2.
Mol Ecol ; 33(14): e17443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943372

RESUMO

The iconic Monarch butterfly is probably the best-known example of chemical defence against predation, as pictures of vomiting naive blue jays in countless textbooks vividly illustrate. Larvae of the butterfly take up toxic cardiac glycosides from their milkweed hostplants and carry them over to the adult stage. These compounds (cardiotonic steroids, including cardenolides and bufadienolides) inhibit the animal transmembrane sodium-potassium ATPase (Na,K-ATPase), but the Monarch enzyme resists this inhibition thanks to amino acid substitutions in its catalytic alpha-subunit. Some birds also have substitutions and can feast on cardiac glycoside-sequestering insects with impunity. A flurry of recent work has shown how the alpha-subunit gene has been duplicated multiple times in separate insect lineages specializing in cardiac glycoside-producing plants. In this issue of Molecular Ecology, Herbertz et al. toss the beta-subunit into the mix, by expressing all nine combinations of three alpha- and three beta-subunits of the milkweed bug Na,K-ATPase and testing their response to a cardenolide from the hostplant. The findings suggest that the diversification and subfunctionalization of genes allow milkweed bugs to balance trade-offs between resistance towards sequestered host plant toxins that protect the bugs from predators, and physiological costs in terms of Na,K-ATPase activity.


Assuntos
Asclepias , Borboletas , ATPase Trocadora de Sódio-Potássio , Animais , Borboletas/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Asclepias/genética , Asclepias/química , Cardenolídeos , Duplicação Gênica , Glicosídeos Cardíacos/farmacologia , Larva
3.
Mol Ecol ; 33(6): e17298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361438

RESUMO

Inbreeding depression, that is, the reduction of health and vigour in individuals with high inbreeding coefficients, is expected to increase with environmental, social, or physiological stress. It has therefore been predicted that sexual selection and the associated stress usually lead to higher inbreeding depression in males than in females. However, sex-specific differences in life history may reverse that pattern during certain developmental stages. In some salmonids, for example, female juveniles start developing their gonads earlier than males who instead grow faster. We tested whether the sexes are differently affected by inbreeding during that time. To study the effects of inbreeding coefficients that may be typical for natural populations of brown trout (Salmo trutta), and also to control for potentially confounding maternal or paternal effects, we sampled males and females from the wild, used their gametes in a block-wise full-factorial breeding design to produce 60 full-sib families, released the offspring as yolk-sac larvae into the wild, sampled them 6 months later, identified their genetic sex, and used microsatellites to assign them to their parents. We used whole-genome resequencing to calculate the kinship coefficients for each breeding pair and hence the expected average inbreeding coefficient per family. Juvenile growth could be predicted from these expected inbreeding coefficients and the genetic sex: Females reached lower body sizes with increasing inbreeding coefficient, while no such link could be found in males. This sex-specific inbreeding depression led to the overall pattern that females were on average smaller than males by the end of their first summer.


Assuntos
Genoma , Endogamia , Humanos , Masculino , Animais , Feminino , Cruzamento , Truta/genética
4.
Mol Ecol ; 33(16): e17464, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994885

RESUMO

Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.


Assuntos
Fluxo Gênico , Deriva Genética , Genética Populacional , Espécies Introduzidas , Animais , Austrália , Bufo marinus/genética , Seleção Genética , Adaptação Fisiológica/genética , Variação Genética , Alelos
5.
Mol Ecol ; 32(13): 3368-3381, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36946911

RESUMO

Africa is considered the "mother continent" from which the first hominins arose. The diversified wildlife and flora of Africa, which ranges from those in the scorching Sahara and Kalahari deserts to those in the vast Savannas and wet tropical forests, are also the most diverse of any continent. Although the continent's abundance and diversity of living resources have provided critical means of subsistence for its inhabitants, future utilization of this biodiversity will demand a fundamental understanding of genetic variation and its adaptive capabilities in the face of natural and man-made stressors. Molecular ecological insights have previously been gained from a variety of vertebrate species native to Africa, and some of these discoveries have larger evolutionary and conservation implications. Despite lagging in genomics research, African scientists are increasingly eager to use the increasingly accessible -omics technology to routinely sequence more animals and plants native to Africa. This overview, which focuses on Africa's vertebrate biodiversity, aims to provide a continental scale perspective on organismal and ecological adaptations discovered through prior genomics research, as well as what conceptually these findings suggest for future research.


Assuntos
Florestas , Genômica , Animais , África , África do Norte , Vertebrados/genética , Biodiversidade , Conservação dos Recursos Naturais
6.
Mol Ecol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843465

RESUMO

Inversions are thought to play a key role in adaptation and speciation, suppressing recombination between diverging populations. Genes influencing adaptive traits cluster in inversions, and changes in inversion frequencies are associated with environmental differences. However, in many organisms, it is unclear if inversions are geographically and taxonomically widespread. The intertidal snail, Littorina saxatilis, is one such example. Strong associations between putative polymorphic inversions and phenotypic differences have been demonstrated between two ecotypes of L. saxatilis in Sweden and inferred elsewhere, but no direct evidence for inversion polymorphism currently exists across the species range. Using whole genome data from 107 snails, most inversion polymorphisms were found to be widespread across the species range. The frequencies of some inversion arrangements were significantly different among ecotypes, suggesting a parallel adaptive role. Many inversions were also polymorphic in the sister species, L. arcana, hinting at an ancient origin.

7.
Mol Ecol ; 32(5): 1133-1148, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36516408

RESUMO

Nutrient exchange forms the basis of the ancient symbiotic relationship that occurs between most land plants and arbuscular mycorrhizal (AM) fungi. Plants provide carbon (C) to AM fungi and fungi provide the plant with nutrients such as nitrogen (N) and phosphorous (P). Nutrient addition can alter this symbiotic coupling in key ways, such as reducing AM fungal root colonization and changing the AM fungal community composition. However, environmental parameters that differentiate ecosystems and drive plant distribution patterns (e.g., pH, moisture), are also known to impact AM fungal communities. Identifying the relative contribution of environmental factors impacting AM fungal distribution patterns is important for predicting biogeochemical cycling patterns and plant-microbe relationships across ecosystems. To evaluate the relative impacts of local environmental conditions and long-term nutrient addition on AM fungal abundance and composition across grasslands, we studied experimental plots amended for 10 years with N, P, or N and P fertilizer in different grassland ecosystem types, including tallgrass prairie, montane, shortgrass prairie, and desert grasslands. Contrary to our hypothesis, we found ecosystem type, not nutrient treatment, was the main driver of AM fungal root colonization, diversity, and community composition, even when accounting for site-specific nutrient limitations. We identified several important environmental drivers of grassland ecosystem AM fungal distribution patterns, including aridity, mean annual temperature, root moisture, and soil pH. This work provides empirical evidence for niche partitioning strategies of AM fungal functional guilds and emphasizes the importance of long-term, large scale research projects to provide ecologically relevant context to nutrient addition studies.


Assuntos
Micorrizas , Ecossistema , Pradaria , Microbiologia do Solo , Solo/química , Plantas/microbiologia , América do Norte , Raízes de Plantas/microbiologia , Fungos/genética
8.
Mol Ecol ; 32(10): 2582-2591, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35445474

RESUMO

Bacterial lineages that populate the human gut microbiota contend with spatial and temporal fluctuations in numerous environmental variables, including bouts of extreme selective agents such as antibiotics. Oscillations in the adaptive landscape can impose balancing selection on populations, leaving characteristic signatures in the sequence variation of functionally significant genomic loci. Despite their potential importance for gut bacterial adaptation, the metagenomic targets of balancing selection have not been identified. Here, I present population genetic evidence that balancing selection maintains allelic diversity in multidrug efflux pumps of multiple predominant gut bacterial species. Metagenome-wide scans of 566,958 genes from 287 bacterial species represented by 118,617 metagenome-assembled genomes indicated that most genes have been conserved by purifying selection. However, dozens of core open reading frames (CORFs) displayed positive Tajima's D values that deviated significantly from their species' genomic backgrounds, indicating the action of balancing selection. Multidrug efflux pumps (MEPs) from a diversity of bacterial species were significantly enriched among the CORFs with Tajima's D values >3 in industrialized, but not nonindustrialized, human populations. The AcrB subunit of an MEP from Bacteroides dorei displayed the highest Tajima's D of any CORF. Divergent haplotypes of this CORF displayed evidence of positive selection and homology to an Escherichia coli AcrB subunit that binds tetracycline and macrolide antibiotics, suggesting functional significance and implicating medical antibiotics as an agent of selection acting on this locus. Other proteins identified as targets of balancing selection included peptidoglycan/LPS O-acetylases and ion transporters. Intriguingly, the degree of balancing selection acting on gut bacterial species was associated with species abundance in the gut based on metagenomic data, further suggesting fitness benefits of the allelic variation identified.


Assuntos
Metagenoma , Seleção Genética , Humanos , Metagenoma/genética , Genética Populacional , Metagenômica , Antibacterianos
9.
Mol Ecol ; 32(3): 696-702, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346182

RESUMO

Processes governing genetic diversity and adaptive potential in reef-building corals are of interest both for fundamental evolutionary biology and for reef conservation. Here, we investigated the possibility of "sweepstakes reproductive success" (SRS) in a broadcast spawning coral, Acropora hyacinthus, at Yap Island, Micronesia. SRS is an extreme yearly variation in the number of surviving offspring among parents. It is predicted to generate genetically differentiated, low-genetic-diversity recruit cohorts, containing close kin individuals. We have tested these predictions by comparing genetic composition of size classes (adults and juveniles) at several sites on the island of Yap. We did see the genome-wide dip in genetic diversity in juveniles compared to adults at two of the four sites; however, both adults and juveniles varied in genetic diversity across sites, and there was no detectable genetic structure among juveniles, which does not conform to the classical SRS scenario. Yet, we have identified a pair of juvenile siblings at the site where juveniles had the lowest genetic diversity compared to adults, an observation that is hard to explain without invoking SRS. While further support for SRS is needed to fully settle the issue, we show that incorporating SRS into the Indo-West Pacific coral metapopulation adaptation model had surprisingly little effect on mean rates of coral cover decline during warming. Still, SRS notably increases year-to-year variation in coral cover throughout the simulation.


Assuntos
Antozoários , Animais , Antozoários/genética , Reprodução/genética , Recifes de Corais
10.
Mol Ecol ; 32(20): 5541-5557, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37691604

RESUMO

Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species, Asterias rubens and A. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome-wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth; Asterias forbesi displays a relatively narrow environmental niche while conversely, A. rubens has a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.

11.
Mol Ecol ; 32(21): 5742-5756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37800849

RESUMO

Understanding the rate and extent to which populations can adapt to novel environments at their ecological margins is fundamental to predicting the persistence of biological communities during ongoing and rapid global change. Recent range expansion in response to climate change in the UK butterfly Aricia agestis is associated with the evolution of novel interactions with a larval food plant, and the loss of its ability to use an ancestral host species. Using ddRAD analysis of 61,210 variable SNPs from 261 females from throughout the UK range of this species, we identify genomic regions at multiple chromosomes that are associated with evolutionary responses, and their association with demographic history and ecological variation. Gene flow appears widespread throughout the range, despite the apparently fragmented nature of the habitats used by this species. Patterns of haplotype variation between selected and neutral genomic regions suggest that evolution associated with climate adaptation is polygenic, resulting from the independent spread of alleles throughout the established range of this species, rather than the colonization of pre-adapted genotypes from coastal populations. These data suggest that rapid responses to climate change do not depend on the availability of pre-adapted genotypes. Instead, the evolution of novel forms of biotic interaction in A. agestis has occurred during range expansion, through the assembly of novel genotypes from alleles from multiple localities.


Assuntos
Borboletas , Animais , Feminino , Borboletas/genética , Geografia , Ecossistema , Aclimatação , Reino Unido , Evolução Biológica , Mudança Climática
12.
Glob Chang Biol ; 29(17): 4711-4730, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37029765

RESUMO

Intraspecific variation plays a critical role in extant and future forest responses to climate change. Forest tree species with wide climatic niches rely on the intraspecific variation resulting from genetic adaptation and phenotypic plasticity to accommodate spatial and temporal climate variability. A centuries-old legacy of forest ecological genetics and provenance trials has provided a strong foundation upon which to continue building on this knowledge, which is critical to maintain climate-adapted forests. Our overall objective is to understand forest trees intraspecific responses to climate across species and biomes, while our specific objectives are to describe ecological genetics models used to build our foundational knowledge, summarize modeling approaches that have expanded the traditional toolset, and extensively review the literature from 1994 to 2021 to highlight the main contributions of this legacy and the new analyzes of provenance trials. We reviewed 103 studies comprising at least three common gardens, which covered 58 forest tree species, 28 of them with range-wide studies. Although studies using provenance trial data cover mostly commercially important forest tree species from temperate and boreal biomes, this synthesis provides a global overview of forest tree species adaptation to climate. We found that evidence for genetic adaptation to local climate is commonly present in the species studied (79%), being more common in conifers (87.5%) than in broadleaf species (67%). In 57% of the species, clines in fitness-related traits were associated with temperature variables, in 14% of the species with precipitation, and in 25% of the species with both. Evidence of adaptation lags was found in 50% of the species with range-wide studies. We conclude that ecological genetics models and analysis of provenance trial data provide excellent insights on intraspecific genetic variation, whereas the role and limits of phenotypic plasticity, which will likely determine the fate of extant forests, is vastly understudied.


Assuntos
Mudança Climática , Árvores , Árvores/genética , Florestas , Adaptação Fisiológica/genética , Ecossistema
13.
J Evol Biol ; 36(4): 663-674, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36810811

RESUMO

DNA methylation in plant genomes occurs in different sequences and genomic contexts that have very different properties. DNA methylation that occurs in CG (mCG) sequence context shows transgenerational stability and high epimutation rate, and can thus provide genealogical information at short time scales. However, due to meta-stability and because mCG variants may arise due to other factors than epimutation, such as environmental stress exposure, it is not clear how well mCG captures genealogical information at micro-evolutionary time scales. Here, we analysed DNA methylation variation between accessions from a geographically widespread, apomictic common dandelion (Taraxacum officinale) lineage when grown experimentally under different light conditions. Using a reduced-representation bisulphite sequencing approach, we show that the light treatment induced differentially methylated cytosines (DMCs) in all sequence contexts, with a bias towards transposable elements. Accession differences were associated mainly with DMCs in CG context. Hierarchical clustering of samples based on total mCG profiles revealed a perfect clustering of samples by accession identity, irrespective of light conditions. Using microsatellite information as a benchmark of genetic divergence within the clonal lineage, we show that genetic divergence between accessions correlates strongly with overall mCG profiles. However, our results suggest that environmental effects that do occur in CG context may produce a heritable signal that partly dilutes the genealogical signal. Our study shows that methylation information in plants can be used to reconstruct micro-evolutionary genealogy, providing a useful tool in systems that lack genetic variation such as clonal and vegetatively propagated plants.


Assuntos
Metilação de DNA , Taraxacum , Taraxacum/genética , Análise de Sequência de DNA , Genômica , Evolução Biológica
14.
Am J Bot ; 110(4): e16139, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758168

RESUMO

PREMISE: Plant lineages differ markedly in species richness globally, regionally, and locally. Differences in whole-genome characteristics (WGCs) such as monoploid chromosome number, genome size, and ploidy level may explain differences in global species richness through speciation or global extinction. However, it is unknown whether WGCs drive species richness within lineages also in a recent, postglacial regional flora or in local plant communities through local extinction or colonization and regional species turnover. METHODS: We tested for relationships between WGCs and richness of angiosperm families across the Netherlands/Germany/Czechia as a region, and within 193,449 local vegetation plots. RESULTS: Families that are species-rich across the region have lower ploidy levels and small monoploid chromosomes numbers or both (interaction terms), but the relationships disappear after accounting for continental and local richness of families. Families that are species-rich within occupied localities have small numbers of polyploidy and monoploid chromosome numbers or both, independent of their own regional richness and the local richness of all other locally co-occurring species in the plots. Relationships between WGCs and family species-richness persisted after accounting for niche characteristics and life histories. CONCLUSIONS: Families that have few chromosomes, either monoploid or holoploid, succeed in maintaining many species in local communities and across a continent and, as indirect consequence of both, across a region. We suggest evolutionary mechanisms to explain how small chromosome numbers and ploidy levels might decrease rates of local extinction and increase rates of colonization. The genome of a macroevolutionary lineage may ultimately control whether its species can ecologically coexist.


Assuntos
Evolução Biológica , Magnoliopsida , Ploidias , Poliploidia , Cromossomos , Biodiversidade
15.
Mol Ecol ; 31(16): 4307-4318, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775282

RESUMO

Studies of insecticide resistance provide insights into the capacity of populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs). Resistance in the major malaria vectors has increased in concert with the expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance is crucial for the development and deployment of resistance-breaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae from the Kenya-Uganda border, with stepwise replacement of the double-mutant (Zanzibar-like TE and Cyp6p4-236 M) with the triple-mutant haplotype (including Cyp6aa1 duplication), which has spread into the Democratic Republic of Congo and Tanzania. The triple-mutant haplotype is strongly associated with increased expression of genes able to metabolize pyrethroids and is strongly predictive of resistance to pyrethroids most notably deltamethrin. Importantly, there was increased mortality in mosquitoes carrying the triple-mutation when exposed to nets cotreated with the synergist piperonyl butoxide (PBO). Frequencies of the triple-mutant haplotype remain spatially variable within countries, suggesting an effective marker system to guide deployment decisions for limited supplies of PBO-pyrethroid cotreated LLINs across African countries.


Assuntos
Anopheles , Antimaláricos , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Antimaláricos/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Quênia , Malária/prevenção & controle , Mosquitos Vetores/genética , Patologia Molecular , Piretrinas/farmacologia
16.
Mol Ecol ; 31(3): 839-858, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34784096

RESUMO

Anthropogenic climate change has led to unprecedented shifts in temperature across many ecosystems. In a context of rapid environmental changes, acclimation is an important process as it may influence the capacity of organisms to survive under novel thermal conditions. Mechanisms of acclimation could involve upregulation of stress response genes involved in protein folding, DNA damage repair and the regulation of signal transduction genes, along with a simultaneous downregulation of genes involved in growth or the cell cycle, in order to maintain cellular functions and equilibria. We transplanted Lobaria pulmonaria lichens originating from different forests to determine the relative effects of long-term acclimation and genetic factors on the variability in expression of mycobiont and photobiont genes. We found a strong response of the mycobiont and photobiont to high temperatures, regardless of sample origin. The green-algal photobiont had an overall lower response than the mycobiont. Gene expression of both symbionts was also influenced by acclimation to transplantation sites and by genetic factors. L. pulmonaria seems to have evolved powerful molecular pathways to deal with environmental fluctuations and stress and can acclimate to new habitats by transcriptomic convergence. Although L. pulmonaria has the molecular machinery to counteract short-term thermal stress, survival of lichens such as L. pulmonaria depends mostly on their long-term positive carbon balance, which can be compromised by higher temperatures and reduced precipitation, and both these outcomes have been predicted for Central Europe in connection with global climate change.


Assuntos
Ascomicetos , Líquens , Ascomicetos/genética , Ecossistema , Expressão Gênica , Líquens/genética
17.
Mol Ecol ; 31(22): 5846-5860, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089907

RESUMO

Ecotypes are distinct populations within a species that are adapted to specific environmental conditions. Understanding how these ecotypes become established, and how they interact when reunited, is fundamental to elucidating how ecological adaptations are maintained. This study focuses on Themeda triandra, a dominant grassland species across Asia, Africa and Australia. It is the most widespread plant in Australia, where it has distinct ecotypes that are usually restricted to either wetter and cooler coastal regions or the drier and hotter interior. We generate a reference genome for T. triandra and use whole genome sequencing for over 80 Themeda accessions to reconstruct the evolutionary history of T. triandra and related taxa. Organelle phylogenies confirm that Australia was colonized by T. triandra twice, with the division between ecotypes predating their arrival in Australia. The nuclear genome provides evidence of differences in the dominant ploidal level and gene-flow among the ecotypes. In northern Queensland there appears to be a hybrid zone between ecotypes with admixed nuclear genomes and shared chloroplast haplotypes. Conversely, in the cracking claypans of Western Australia, there is cytonuclear discordance with individuals possessing the coastal chloroplast and interior clade nuclear genome. This chloroplast capture is potentially a result of adaptive introgression, with selection detected in the rpoC2 gene which is associated with water use efficiency. The reason that T. triandra is the most widespread plant in Australia appears to be a result of distinct ecotypic genetic variation and genome duplication, with the importance of each depending on the geographic scale considered.


Assuntos
Cloroplastos , Hibridização Genética , Austrália , Cloroplastos/genética , Variação Genética/genética , Haplótipos/genética , Filogenia
18.
Mol Ecol ; 31(4): 1281-1298, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878674

RESUMO

Sexually selected traits show large variation and rapid evolution across the animal kingdom, yet genetic variation often persists within populations despite apparent directional selection. A key step in solving this long-standing paradox is to determine the genetic architecture of sexually selected traits to understand evolutionary drivers and constraints at the genomic level. Antlers are a form of sexual weaponry in male red deer (Cervus elaphus). On the island of Rum, Scotland, males with larger antlers have increased breeding success, yet there has been no evidence of any response to selection at the genetic level. To try and understand the mechanisms underlying this observation, we investigate the genetic architecture of ten antler traits and their principal components using genomic data from >38,000 SNPs. We estimate the heritabilities and genetic correlations of the antler traits using a genomic relatedness approach. We then use genome-wide association and haplotype-based regional heritability to identify regions of the genome underlying antler morphology, and an empirical Bayes approach to estimate the underlying distributions of allele effect sizes. We show that antler morphology is highly repeatable over an individual's lifetime, heritable and has a polygenic architecture and that almost all antler traits are positively genetically correlated with some loci identified as having pleiotropic effects. Our findings suggest that a large mutational target and genetic covariances among antler traits, in part maintained by pleiotropy, are likely to contribute to the maintenance of genetic variation in antler morphology in this population.


Assuntos
Chifres de Veado , Cervos , Animais , Chifres de Veado/anatomia & histologia , Chifres de Veado/fisiologia , Teorema de Bayes , Cervos/genética , Estudo de Associação Genômica Ampla , Genômica , Masculino
19.
Mol Ecol ; 31(18): 4739-4761, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848921

RESUMO

Changes in DNA methylation in specific coding or non-coding regions can influence development and potentially divergence in traits within species and groups. While the impact of epigenetic variation on developmental pathways associated with evolutionary divergence is the focus of intense investigation, few studies have looked at recently diverged systems. Phenotypic diversity between closely related populations of Arctic charr (Salvelinus alpinus), which diverged within the last 10,000 years, offers an interesting ecological model to address such effects. Using bisulphite sequencing, we studied general DNA methylation patterns during development in the four sympatric morphs of Arctic charr from Lake Thingvallavatn. The data revealed strong differences between developmental timepoints and between morphs (mainly along the benthic-limnetic axis), both at single CpG sites and in 1000 bp-regions. Genes located close to differentially methylated CpG sites were involved in nucleosome assembly, regulation of osteoclast differentiation, and cell-matrix adhesion. Differentially methylated regions were enriched in tRNA and rRNA sequences, and half of them were located close to transcription start sites. The expression of 14 genes showing methylation differences over time or between morphs was further investigated by qPCR and nine of these were found to be differentially expressed between morphs. Four genes (ARHGEF37-like, H3-like, MPP3 and MEGF9) showed a correlation between methylation and expression. Lastly, histone gene clusters displayed interesting methylation differences between timepoints and morphs, as well as intragenic methylation variation. The results presented here provide a motivation for further studies on the contribution of epigenetic traits, such as DNA methylation, to phenotypic diversity and developmental mechanisms.


Assuntos
Metilação de DNA , Truta , Animais , Evolução Biológica , Metilação de DNA/genética , Fenótipo , Simpatria , Truta/genética
20.
Mol Ecol ; 31(12): 3432-3450, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510796

RESUMO

Genetic evidence of selection for complex and polygenically regulated phenotypes can easily become masked by neutral population genetic structure and phenotypic plasticity. Without direct evidence of genotype-phenotype associations it can be difficult to conclude to what degree a phenotype is heritable or a product of environment. Common garden laboratory studies control for environmental stochasticity and help to determine the mechanism that regulate traits. Here we assess lipid content, growth, weight, and length variation in full and hybrid F1 crosses of deep and shallow water sympatric lake charr ecotypes reared for nine years in a common garden experiment. Redundancy analysis (RDA) and quantitative-trait-loci (QTL) genomic scans are used to identify associations between genotypes at 19,714 single nucleotide polymorphisms (SNPs) aligned to the lake charr genome and individual phenotypes to determine the role that genetic inheritance plays in ecotype phenotypic diversity. Lipid content, growth, length, and weight differed significantly among lake charr crosses throughout the experiment suggesting that pedigree plays a large roll in lake charr development. Polygenic scores of 15 SNPs putatively associated with lipid content and/or condition factor indicated that ecotype distinguishing traits are polygenically regulated and additive. A QTL identified on chromosome 38 contained >200 genes, some of which were associated with lipid metabolism and growth, demonstrating the complex nature of ecotype diversity. The results of our common garden study further indicate that lake charr ecotypes observed in nature are predetermined at birth and that ecotypes differ fundamentally in lipid metabolism and growth.


Assuntos
Ecótipo , Truta , Animais , Lagos , Lipídeos , Locos de Características Quantitativas/genética , Truta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA