Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2308811121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805274

RESUMO

Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.


Assuntos
Mudança Climática , Micorrizas , Simbiose , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , América do Norte , Florestas , Biodiversidade , Ecossistema
2.
Proc Natl Acad Sci U S A ; 120(36): e2307519120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643216

RESUMO

Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes-urbanization and forest edge creation-on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new "suites" of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction-including increased greenhouse gas production-in temperate forest regions that are subsumed by urban expansion, both now and in the future.


Assuntos
Micorrizas , Simbiose , Animais , Urbanização , Florestas , Solo
3.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581206

RESUMO

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Assuntos
Biodiversidade , Camada de Gelo , Micorrizas , Micorrizas/fisiologia , Camada de Gelo/microbiologia , Solo/química , Microclima , Microbiologia do Solo
4.
New Phytol ; 242(6): 2763-2774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38605488

RESUMO

It has been proposed that ectomycorrhizal fungi can reduce decomposition while arbuscular mycorrhizal fungi may enhance it. These phenomena are known as the 'Gadgil effect' and 'priming effect', respectively. However, it is unclear which one predominates globally. We evaluated whether mycorrhizal fungi decrease or increase decomposition, and identified conditions that mediate this effect. We obtained decomposition data from 43 studies (97 trials) conducted in field or laboratory settings that controlled the access of mycorrhizal fungi to substrates colonized by saprotrophs. Across studies, mycorrhizal fungi promoted decomposition of different substrates by 6.7% overall by favoring the priming effect over the Gadgil effect. However, we observed significant variation among studies. The substrate C : N ratio and absolute latitude influenced the effect of mycorrhizal fungi on decomposition and contributed to the variation. Specifically, mycorrhizal fungi increased decomposition at low substrate C : N and absolute latitude, but there was no discernable effect at high values. Unexpectedly, the effect of mycorrhizal fungi was not influenced by the mycorrhizal type. Our findings challenge previous assumptions about the universality of the Gadgil effect but highlight the potential of mycorrhizal fungi to negatively influence soil carbon storage by promoting the priming effect.


Los hongos ectomicorrízicos puden reducir la descomposición mientras que los hongos micorrízico­arbusculares pueden potenciarla. Ambos fenómenos son conocidos como "Gadgil effect" y "priming effect", respectivamente. Sin embargo, no es claro cuál predomina mundialmente. En este trabajo evaluamos si los hongos micorrízicos disminuyen o promueven la descomposición, e identificamos las condiciones que regulan este efecto. Para ello, recopilamos datos de descomposición de 43 estudios (97 observaciones) realizados en condiciones de campo o laboratorio que controlaron el acceso de los hongos micorrízicos a sustratos colonizados por saprótrofos. Los hongos micorrízicos promovieron la descomposición de diferentes sustratos en un 6.7%. Sin embargo, observamos una variación significativa entre estudios. La relación C : N del sustrato y la latitud influyeron en el efecto de los hongos micorrícicos sobre la descomposición y contribuyeron a la variabilidad. Específicamente, los hongos micorrízicos aumentaron la descomposición a valores bajos de C : N del sustrato y latitud, pero no hubo un efecto discernible en valores altos. Inesperadamente, el tipo de micorriza no influyó en el efecto de los hongos micorrízicos. Nuestros hallazgos cuestionan la universalidad del Gadgil effect, y resaltan el potencial de los hongos micorrízicos para influir negativamente en el almacenamiento de carbono del suelo al promover el priming effect.


Assuntos
Micorrizas , Micorrizas/fisiologia , Solo/química , Carbono/metabolismo , Nitrogênio/metabolismo
5.
New Phytol ; 242(4): 1704-1716, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273466

RESUMO

Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling.


Assuntos
Micorrizas , Nitrogênio , Pergelissolo , Raízes de Plantas , Tundra , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Pergelissolo/microbiologia , Micorrizas/fisiologia , Fungos/fisiologia , Característica Quantitativa Herdável , Temperatura , Especificidade da Espécie
6.
New Phytol ; 243(3): 1205-1219, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38855965

RESUMO

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.


Assuntos
Biodiversidade , Micorrizas , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Especificidade da Espécie
7.
New Phytol ; 242(4): 1486-1506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297461

RESUMO

Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.


Assuntos
Agricultura , Ecologia , Genômica , Micorrizas , Simbiose , Micorrizas/fisiologia , Micorrizas/genética , Simbiose/genética , Pesquisa , Plantas/microbiologia
8.
Mol Ecol ; 33(16): e17470, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39034770

RESUMO

Inbreeding, the mating of individuals that are related through common ancestry, is of central importance in evolutionary and conservation biology due to its impacts on individual fitness and population dynamics. However, while advanced genomic approaches have revolutionised the study of inbreeding in animals, genomic studies of inbreeding are rare in plants and lacking in fungi. We investigated global patterns of inbreeding in the prized edible porcini mushroom Boletus edulis using 225 whole genomes from seven lineages distributed across the northern hemisphere. Genomic inbreeding was quantified using runs of homozygosity (ROHs). We found appreciable variation both among and within lineages, with some individuals having over 20% of their genomes in ROHs. Much of this variation could be explained by a combination of elevation and latitude, and to a lesser extent by predicted habitat suitability during the last glacial maximum. In line with this, the majority of ROHs were short, reflecting ancient common ancestry dating back approximately 200-1700 generations ago, while longer ROHs indicative of recent common ancestry (less than approximately 50 generations ago) were infrequent. Our study reveals the inbreeding legacy of major climatic events in a widely distributed forest mutualist, aligning with prevailing theories and empirical studies of the impacts of historical glaciation events on the dominant forest tree species of the northern hemisphere.


Assuntos
Genética Populacional , Homozigoto , Endogamia , Agaricales/genética
9.
Plant Cell Environ ; 47(2): 600-610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885374

RESUMO

Ectomycorrhizal fungi (ECMFs) that are involved in phosphorus mobilisation and turnover have limited ability to mineralise phytate alone. The endofungal bacteria in the ectomycorrhizal fruiting body may contribute to achieving this ecological function of ECMFs. We investigated the synergistic effect and mechanisms of endofungal bacteria and ECMF Suillus grevillea on phytate mineralisation. The results showed that soluble phosphorus content in the combined system of endofungal bacterium Cedecea lapagei and S. grevillea was 1.8 times higher than the sum of C. lapagei and S. grevillea alone treatment under the phytate mineralisation experiment. The S. grevillea could first chemotactically assist C. lapagei in adhering to the surface of S. grevillea. Then, the mineralisation of phytate was synergistically promoted by increasing the biomass of C. lapagei and the phosphatase and phytase activities of S. grevillea. The expression of genes related to chemotaxis, colonisation, and proliferation of C. lapagei and genes related to phosphatase and phytase activity of S. grevillea was also significantly upregulated. Furthermore, in the pot experiment, we verified that there might exist a ternary symbiotic system in the natural forest in which endofungal bacteria and ECMFs could synergistically promote phytate uptake in the plant Pinus massoniana via the ectomycorrhizal system.


Assuntos
6-Fitase , Micorrizas , Pinus , Micorrizas/metabolismo , Pinus/metabolismo , Fósforo/metabolismo , 6-Fitase/metabolismo , Ácido Fítico/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Bactérias/metabolismo
10.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822535

RESUMO

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Assuntos
Micorrizas , Nitrogênio , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Solo/química , Plantas/metabolismo , Plantas/microbiologia , Ecossistema
11.
Appl Microbiol Biotechnol ; 108(1): 99, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204135

RESUMO

Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina, Russula, and Lactarius, while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity-ecosystem functioning during forest succession. KEY POINTS: •Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. •Phytopathogenic fungi is a key driver in shaping EMF community. •The effect of plant Shannon's diversity on EMF communities changed during the forest aging process.


Assuntos
Agaricales , Micobioma , Micorrizas , Ecossistema , Florestas , Solo
12.
Mycorrhiza ; 34(1-2): 45-55, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483629

RESUMO

Worldwide urban landscapes are expanding because of the growing human population. Urban ecosystems serve as habitats to highly diverse communities. However, studies focusing on the diversity and structure of ectomycorrhizal communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is an ectomycorrhizal tree thriving in tropical montane forests hosting a high diversity of ectomycorrhizal fungi. Q. humboldtii is planted as an urban tree in Bogotá (Colombia). We studied how root-associated fungal communities of this tree change between natural and urban areas. Using Illumina sequencing, we amplified the ITS1 region and analyzed the resulting data using both OTUs and Amplicon Sequence Variants (ASVs) bioinformatics pipelines. The results obtained using both pipelines showed no substantial differences between OTUs and ASVs for the community patterns of root-associated fungi, and only differences in species richness were observed. We found no significant differences in the species richness between urban and rural sites based on Fisher's alpha or species-accumulation curves. However, we found significant differences in the community composition of fungi present in the roots of rural and urban trees with rural communities being dominated by Russula and Lactarius and urban communities by Scleroderma, Hydnangium, and Trechispora, suggesting a high impact of urban disturbances on ectomycorrhizal fungal communities. Our results highlight the importance of urban trees as reservoirs of fungal diversity and the potential impact of urban conditions on favoring fungal species adapted to more disturbed ecosystems.


Assuntos
Agaricales , Basidiomycota , Micobioma , Micorrizas , Quercus , Humanos , Micorrizas/genética , Ecossistema , Quercus/microbiologia , Biodiversidade , DNA Fúngico/genética , Árvores/microbiologia
13.
Mycorrhiza ; 34(1-2): 57-67, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502187

RESUMO

Root-colonizing fungi, such as mycorrhizal fungi and dark septate endophyte fungi, are often found on pioneer plant species during early primary succession. However, little is known about which fungal species are responsible for the establishment of pioneer plants when these symbionts colonize simultaneously. We investigated the root-colonizing fungal communities of Pinus thunbergii that established prior to lichens, bryophytes, and short-lived herbaceous plants in a primary successional volcanic mudflow site on Kuchinoerabu Island, Japan. We collected a total of 54 current-year and 1- to 2-year-old seedlings. The colonization of root fungi was evaluated by direct observation of key structures (e.g., mantle, arbuscule, microsclerotia, and hyphae) and molecular analysis. Of the 34 current-year seedlings collected, only 12 individuals were colonized by ectomycorrhizal (ECM) fungi. By contrast, all 1- to 2-year-old seedlings were colonized by ECM fungi. Seedlings colonized by pine-specific ECM fungi, specifically Rhizopogon roseolus and Suillus granulatus, showed higher nitrogen and phosphorus contents in their needles compared to non-ECM seedlings. Arbuscular mycorrhizal fungi and dark septate endophyte fungi were found in only two and three individuals, respectively. The high density of mycophagous deer on Kuchinoerabu-jima may contribute to the favored dispersal of ECM fungi over other root-colonizing fungi. In conclusion, the seedling establishment of P. thunbergii at the volcanic mudflow may be largely supported by ECM fungi, with negligible effects of arbuscular mycorrhizal fungi and dark septate endophytes.


Assuntos
Cervos , Micorrizas , Pinus , Humanos , Animais , Pinus/microbiologia , Plântula/microbiologia , Japão , Raízes de Plantas/microbiologia
14.
J Environ Manage ; 362: 121312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824888

RESUMO

Ectomycorrhizal (EcM) fungi play an important role in nutrient cycling and community ecological dynamics and are widely acknowledged as important components of forest ecosystems. However, little information is available regarding EcM fungal community structure or the possible relationship between EcM fungi, soil properties, and forestry activities in Pinus massoniana forests. In this study, we evaluated soil properties, extracellular enzyme activities, and fungal diversity and community composition in root and soil samples from pure Pinus massoniana natural forests, pure P. massoniana plantations, and P. massoniana and Liquidambar gracilipes mixed forests. The mixed forest showed the highest EcM fungal diversity in both root and bulk soil samples. Community composition and co-occurrence network structures differed significantly between forest types. Variation in the EcM fungal community was significantly correlated with the activities of ß-glucuronidase and ß-1,4-N-acetylglucosaminidase, whereas non-EcM fungal community characteristics were significantly correlated with ß-1,4-glucosidase and ß-glucuronidase activities. Furthermore, stochastic processes predominantly drove the assembly of both EcM and non-EcM fungal communities, while deterministic processes exerted greater influence on soil fungal communities in mixed forests compared to pure forests. Our findings may inform a deeper understanding of how the assembly processes and environmental roles of subterranean fungal communities differ between mixed and pure plantations and may provide insights for how to promote forest sustainability in subtropical areas.


Assuntos
Florestas , Micorrizas , Pinus , Microbiologia do Solo , Pinus/microbiologia , Solo/química , Biodiversidade , Fungos , Ecossistema
15.
New Phytol ; 237(3): 987-998, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346200

RESUMO

To distinguish among hypotheses on the importance of resource-exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal species, Rhizopogon roseolus and Pisolithus arhizus in a laboratory experiment. We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers. Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource-exchange hypothesis, and N transfer to plants was positively associated with fungal biomass. Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource-exchange hypothesis, although among-species variability is in need of further characterization.


Assuntos
Micorrizas , Pinus , Simbiose , Raízes de Plantas/microbiologia , Carbono , Pinus taeda , Plantas , Pinus/microbiologia , Solo
16.
New Phytol ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974494

RESUMO

Ectomycorrhizal (ECM) fungi are crucial for tree nitrogen (N) nutrition; however, mechanisms governing N transfer from fungal tissues to the host plant are not well understood. ECM fungal isolates, even from the same species, vary considerably in their ability to support tree N nutrition, resulting in a range of often unpredictable symbiotic outcomes. In this study, we used isotopic labelling to quantify the transfer of N to the plant host by isolates from the ECM genus Pisolithus, known to have significant variability in colonisation and transfer of nutrients to a host. We considered the metabolic fate of N acquired by the fungi and found that the percentage of plant N acquired through symbiosis significantly correlated to the concentration of free amino acids in ECM extra-radical mycelium. Transcriptomic analyses complemented these findings with isolates having high amino acid content and N transfer showing increased expression of genes related to amino acid transport and catabolic pathways. These results suggest that fungal N metabolism impacts N transfer to the host plant in this interaction and that relative N transfer may be possible to predict through basic biochemical analyses.

17.
New Phytol ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697631

RESUMO

Tree growth in boreal forests is driven by ectomycorrhizal fungal mobilisation of organic nitrogen and mineral nutrients in soils with discrete organic and mineral horizons. However, there are no studies of how ectomycorrhizal mineral weathering and organic nitrogen mobilisation processes are integrated across the soil profile. We studied effects of organic matter (OM) availability on ectomycorrhizal functioning by altering the proportions of natural organic and mineral soil in reconstructed podzol profiles containing Pinus sylvestris plants, using 13 CO2 pulse labelling, patterns of naturally occurring stable isotopes (26 Mg and 15 N) and high-throughput DNA sequencing of fungal amplicons. Reduction in OM resulted in nitrogen limitation of plant growth and decreased allocation of photosynthetically derived carbon and mycelial growth in mineral horizons. Fractionation patterns of 26 Mg indicated that magnesium mobilisation and uptake occurred primarily in the deeper mineral horizon and was driven by carbon allocation to ectomycorrhizal mycelium. In this horizon, relative abundance of ectomycorrhizal fungi, carbon allocation and base cation mobilisation all increased with increased OM availability. Allocation of carbon through ectomycorrhizal fungi integrates organic nitrogen mobilisation and mineral weathering across soil horizons, improving the efficiency of plant nutrient acquisition. Our findings have fundamental implications for sustainable forest management and belowground carbon sequestration.

18.
New Phytol ; 238(3): 1215-1229, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751898

RESUMO

Mechanisms of diversification in fungi are relatively poorly known. Many ectomycorrhizal symbionts show preference for particular host genera or families, so host-symbiont selection may be an important driver of fungal diversification in ectomycorrhizal systems. However, whether ectomycorrhizal hosts and symbionts show correlated evolutionary patterns remains untested, and it is unknown whether fungal specialisation also occurs in systems dominated by hosts from the same genus. We use metabarcoding of ectomycorrhizal fungi collected with hyphal ingrowth bags from Nothofagus forests across southern New Zealand to investigate host-symbiont specialisation and correlated evolution. We examine how ectomycorrhizal communities differ between host species and look for patterns of host-symbiont cophylogeny. We found substantial differences in ectomycorrhizal communities associated with different host taxa, particularly between hosts from different subgenera (Lophozonia and Fuscospora), but also between more closely related hosts. Twenty-four per cent of fungal taxa tested showed affiliations to particular hosts, and tests for cophylogeny revealed significant correlations between host relatedness and the fungal phylogeny that extended to substantial evolutionary depth. These results provide new evidence of correlated evolution in ectomycorrhizal systems, indicating that preferences among closely related host species may represent an important evolutionary driver for local lineage diversification in ectomycorrhizal fungi.


Assuntos
Micorrizas , Micorrizas/genética , Biodiversidade , Florestas , Hifas , Especificidade de Hospedeiro , Filogenia
19.
New Phytol ; 239(5): 1651-1664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37322611

RESUMO

The continuous imbalance between nitrogen (N) and phosphorus (P) deposition is expected to shift many ecosystems from N- to P limitation. Extraradical hyphae of ectomycorrhizal (ECM) fungi play important roles in plant nutrient acquisition under nutrient deficiency. However, whether and how ECM hyphae enhance soil P availability to alleviate N-induced P deficiency remains unclear. We investigated the impacts of ECM hyphae on transformations among different soil P fractions and underlying mechanisms under N deposition in two ECM-dominated forests. Ectomycorrhizal hyphae enhanced soil P availability under N addition by stimulating mineralization of organic P (Po) and desorption and solubilization of secondary mineral P, as indicated by N-induced increase in positive hyphal effect on plant-available P pool and negative hyphal effects on Po and secondary mineral P pools. Moreover, ECM hyphae increased soil phosphatase activity and abundance of microbial genes associated with Po mineralization and inorganic P solubilization, while decreasing concentrations of Fe/Al oxides. Our results suggest that ECM hyphae can alleviate N-induced P deficiency in ECM-dominated forests by regulating interactions between microbial and abiotic factors involved in soil P transformations. This advances our understanding of plant acclimation strategies via mediating plant-mycorrhiza interactions to sustain forest production and functional stability under changing environments.


Assuntos
Micorrizas , Fósforo , Ecossistema , Hifas , Nitrogênio , Florestas , Micorrizas/fisiologia , Minerais , Plantas , Solo , Microbiologia do Solo
20.
New Phytol ; 240(1): 412-425, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37148190

RESUMO

Drainage-induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role. We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested). Mycorrhizal fungi dominated the community across the gradients. When moving towards ditches, the dominant type of mycorrhizal association abruptly shifted from ericoid mycorrhiza to ectomycorrhiza at c. 120 m from the ditches. This distance corresponded with increased peat loss, from which more than half may be attributed to oxidation. The ectomycorrhizal genus Cortinarius dominated at the drained end of the gradients and its relatively higher genetic potential to produce class II peroxidases (together with Mycena) was positively associated with peat humification and negatively with carbon-to-nitrogen ratio. Our study is consistent with a plant-soil feedback mechanism, driven by a shift in the mycorrhizal type of vegetation, that potentially mediates changes in aerobic decomposition during postdrainage succession. Such feedback may have long-term legacy effects upon postdrainage restoration efforts and implication for tree encroachment onto carbon-rich soils globally.


Assuntos
Micorrizas , Micorrizas/fisiologia , Árvores , Solo , Plantas , Carbono , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA