Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 24(3): 131-145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35579216

RESUMO

Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.


Assuntos
1-Fosfatidilinositol 4-Quinase , Fosfatidilinositóis , Espécies Reativas de Oxigênio , 1-Fosfatidilinositol 4-Quinase/metabolismo , Ligação Proteica , Replicação Viral/fisiologia
2.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189249

RESUMO

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Acetiltransferases N-Terminal , Fosfotransferases (Aceptor do Grupo Álcool) , Criança , Pré-Escolar , Humanos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antivirais , Coenzima A/metabolismo , Infecções por Coxsackievirus , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Proteínas de Membrana/metabolismo , Acetiltransferases N-Terminal/metabolismo , Biogênese de Organelas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Replicação Viral/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046043

RESUMO

Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.


Assuntos
Antígenos CD55/metabolismo , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/fisiologia , Interações Hospedeiro-Patógeno , Receptores Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Enterovirus Humano B/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Relação Estrutura-Atividade , Ligação Viral
5.
BMC Microbiol ; 24(1): 264, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026166

RESUMO

BACKGROUND: More than 90% of colorectal cancer (CRC) arises from advanced adenomas (AA) and gut microbes are closely associated with the initiation and progression of both AA and CRC. OBJECTIVE: To analyze the characteristic microbes in AA. METHODS: Fecal samples were collected from 92 AA and 184 negative control (NC). Illumina HiSeq X sequencing platform was used for high-throughput sequencing of microbial populations. The sequencing results were annotated and compared with NCBI RefSeq database to find the microbial characteristics of AA. R-vegan package was used to analyze α diversity and ß diversity. α diversity included box diagram, and ß diversity included Principal Component Analysis (PCA), principal co-ordinates analysis (PCoA), and non-metric multidimensional scaling (NMDS). The AA risk prediction models were constructed based on six kinds of machine learning algorithms. In addition, unsupervised clustering methods were used to classify bacteria and viruses. Finally, the characteristics of bacteria and viruses in different subtypes were analyzed. RESULTS: The abundance of Prevotella sp900557255, Alistipes putredinis, and Megamonas funiformis were higher in AA, while the abundance of Lilyvirus, Felixounavirus, and Drulisvirus were also higher in AA. The Catboost based model for predicting the risk of AA has the highest accuracy (bacteria test set: 87.27%; virus test set: 83.33%). In addition, 4 subtypes (B1V1, B1V2, B2V1, and B2V2) were distinguished based on the abundance of gut bacteria and enteroviruses (EVs). Escherichia coli D, Prevotella sp900557255, CAG-180 sp000432435, Phocaeicola plebeiuA, Teseptimavirus, Svunavirus, Felixounavirus, and Jiaodavirus are the characteristic bacteria and viruses of 4 subtypes. The results of Catboost model indicated that the accuracy of prediction improved after incorporating subtypes. The accuracy of discovery sets was 100%, 96.34%, 100%, and 98.46% in 4 subtypes, respectively. CONCLUSION: Prevotella sp900557255 and Felixounavirus have high value in early warning of AA. As promising non-invasive biomarkers, gut microbes can become potential diagnostic targets for AA, and the accuracy of predicting AA can be improved by typing.


Assuntos
Adenoma , Bactérias , Neoplasias Colorretais , Fezes , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Adenoma/microbiologia , Adenoma/virologia , Fezes/microbiologia , Fezes/virologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/virologia , Masculino , Pessoa de Meia-Idade , Feminino , Vírus/isolamento & purificação , Vírus/classificação , Vírus/genética , Vírus/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Idoso , Aprendizado de Máquina
6.
J Med Virol ; 96(8): e29827, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39056240

RESUMO

Enterovirus (EV) infections have various symptoms and severe complications, including death. To determine EV prevalence and EV types in Slovenia, data on over 25 000 EV RNA tests for diagnostics and surveillance from 2014 to 2023 were analyzed. Altogether, 3733 cerebrospinal fluid (CSF) and 21 297 respiratory (sentinel and clinical) samples were tested for EV RNA. EV typing was performed on all residual EV-positive CSF samples and on subset of respiratory specimens. Altogether, 1238 samples tested positive for EV RNA: 238 (6.4%) CSF and 1000 (4.7%) respiratory samples. EV-positive patients were predominantly male (p < 0.001). Many EV-positive CSF samples were from infants under 3 months (33.1%), whereas most EV-positive respiratory samples were from children 1 to 2 years old (49.2%). Echovirus 30 (E-30) was most frequent in CSF (33.0%), followed by CV-B5 (13.8%) and E-6 (13.8%). CV-A6 was most frequent in respiratory samples (16.0%), followed by EV-D68 (7.6%) and CV-A5 (7.4%). EV types in CSF and respiratory samples show diverse dynamics, with some outbreaks indicated. A significant difference was found in the EV detection rate between CSF and respiratory samples by age. Various EV types were characterized, showing that some EV types are more neurotropic or cause more severe infections.


Assuntos
Infecções por Enterovirus , Enterovirus , Epidemiologia Molecular , Humanos , Eslovênia/epidemiologia , Lactente , Masculino , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Infecções por Enterovirus/líquido cefalorraquidiano , Feminino , Pré-Escolar , Enterovirus/genética , Enterovirus/isolamento & purificação , Enterovirus/classificação , Criança , Adolescente , RNA Viral/genética , RNA Viral/líquido cefalorraquidiano , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/líquido cefalorraquidiano , Recém-Nascido , Adulto , Adulto Jovem , Prevalência , Líquido Cefalorraquidiano/virologia , Genótipo , Pessoa de Meia-Idade , Idoso , Filogenia
7.
J Med Virol ; 96(8): e29838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39081166

RESUMO

Enteroviruses are important human pathogens with diverse serotypes, posing a major challenge to develop vaccines for individual serotypes, the success of polio vaccines in controlling and eradicating polio, along with the recent emergence and high prevalence of enterovirus-caused infectious diseases, highlights the importance of enterovirus vaccine development. Given our previous report on enteroviruses weakened by the 2 A S/T125A mutation, we assessed the potential of the EV-A71 2A-125A mutant as a vaccine candidate to address this challenge. We found that the 2A-125A mutant caused transient mild symptoms, low viral loads, and no significant pathological changes mild pathological changes in hSCARB2-KI mice, producing long-lasting cross-neutralizing antibodies against two EV-A71 wild strains. Pre-exposure to the 2A-125A mutant substantially protected against the EV-A71 Isehara wild-type strain, causing minor pathologies, significantly reducing muscle and lung inflammation, and preventing neurological damage, with reduced viral loads in vivo. Pre-exposure also distinctly suppressed the expression of pro-inflammatory cytokines, correlating to the severity of clinical symptoms. Collectively, the EV-A71 2A-125A mutant was attenuated and could generate a robust and protective immune response, suggesting its potential as a vaccine candidate and global solution for specific enterovirus vaccine development.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Enterovirus Humano A , Infecções por Enterovirus , Vacinas Atenuadas , Carga Viral , Vacinas Virais , Animais , Enterovirus Humano A/imunologia , Enterovirus Humano A/genética , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Humanos , Desenvolvimento de Vacinas , Feminino , Mutação , Citocinas
8.
J Med Virol ; 96(5): e29658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727043

RESUMO

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. Due to the limited data available, the World Health Organization (WHO) considers public health risk to the general population to be low. The present study investigated the genetic variation and molecular evolution of E11 genomes collected from May to December 2023. Whole genome sequencing (WGS) was performed for 16 E11 strains. Phylogenetic analysis on WG showed how all Italian strains belonged to genogroup D5, similarly to other E11 strains recently reported in France and Germany all together aggregated into separate clusters. A cluster-specific recombination pattern was also identified using phylogenetic analysis of different genome regions. Echovirus 6 was identified as the major recombinant virus in 3Cpro and 3Dpol regions. The molecular clock analysis revealed that the recombination event probably occurred in June 2018 (95% HPD interval: Jan 2016-Jan 2020). Shannon entropy analyses, within P1 region, showed how 11 amino acids exhibited relatively high entropy. Five of them were exposed on the canyon region which is responsible for receptor binding with the neonatal Fc receptor. The present study showed the recombinant origin of a new lineage of E11 associated with severe neonatal infections.


Assuntos
Infecções por Echovirus , Enterovirus Humano B , Genoma Viral , Genótipo , Filogenia , Recombinação Genética , Humanos , Recém-Nascido , Genoma Viral/genética , Enterovirus Humano B/genética , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Infecções por Echovirus/virologia , Infecções por Echovirus/epidemiologia , Variação Genética , Sequenciamento Completo do Genoma , Evolução Molecular , Itália/epidemiologia
9.
Infection ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150641

RESUMO

PURPOSE: Recently, cases of serious illness in newborns infected with Echovirus 11 have been reported in Europe, including Italy. Here, we report the case of a newborn diagnosed with disseminated Echovirus 11 infection, which occurred in October 2023 in the Province of Bolzano, Italy. METHODS: A molecular screening, by Real-Time RT-PCR, was employed to analyse the cerebrospinal fluid, blood and stool samples, and nasal swabs. The entire viral genome was sequenced using both Illumina and Nanopore technologies. RESULTS: The patient was admitted to hospital due to fever. Molecular testing revealed the presence of enterovirus RNA. Typing confirmed the presence of Echovirus 11. The patient was initially treated with antibiotic therapy and, following the diagnosis of enterovirus infection, also with human immunoglobulins. Over the following days, the patient remained afebrile, with decreasing inflammation indices and in excellent general condition. Genomic and phylogenetic characterization suggested that the strain was similar to strains from severe cases reported in Europe. CONCLUSIONS: Despite the low overall risk for the neonatal population in Europe, recent cases of Echovirus 11 have highlighted the importance of surveillance and complete genome sequencing is fundamental to understanding the phylogenetic relationships of Echovirus 11 variants.

10.
Anal Bioanal Chem ; 416(8): 1971-1982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358534

RESUMO

Hand, foot, and mouth disease (HFMD) caused by various enteroviruses is a major public health concern globally. Human enterovirus 71(EVA71), coxsackievirus A16 (CVA16), coxsackievirus A6 (CVA6), and coxsackievirus A10 (CVA10) are four major enteroviruses responsible for HFMD. Rapid, accurate, and specific point-of-care (POC) detection of the four enteroviruses is crucial for the prevention and control of HFMD. Here, we developed two multiplex high-fidelity DNA polymerase loop-mediated isothermal amplification (mHiFi-LAMP) assays for simultaneous detection of EVA71, CVA16, CVA6, and CVA10. The assays have good specificity and exhibit high sensitivity, with limits of detection (LOD) of 11.2, 49.6, 11.4, and 20.5 copies per 25 µL reaction for EVA71, CVA16, CVA6, and CVA10, respectively. The mHiFi-LAMP assays showed an excellent clinical performance (sensitivity 100.0%, specificity 83.3%, n = 47) when compared with four singleplex RT-qPCR assays (sensitivity 93.1%, specificity 100%). In particular, the HiFi-LAMP assays exhibited better performance (sensitivity 100.0%, specificity 100%) for CVA16 and CVA6 than the RT-qPCR assays (sensitivity 75.0-92.3%, specificity 100%). Furthermore, the mHiFi-LAMP assays detected all clinical samples positive for the four enteroviruses within 30 min, obviously shorter than about 1-1.5 h by the RT-qPCR assays. The new mHiFi-LAMP assays can be used as a robust point-of-care testing (POCT) tool to facilitate surveillance of HFMD at rural and remote communities and resource-limited settings.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Técnicas de Amplificação de Ácido Nucleico , Humanos , Doença de Mão, Pé e Boca/diagnóstico , Enterovirus/genética , Enterovirus Humano A/genética , Técnicas de Diagnóstico Molecular , China/epidemiologia , Filogenia
11.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792166

RESUMO

Food-borne transmission is a recognized route for many viruses associated with gastrointestinal, hepatic, or neurological diseases. Therefore, it is essential to identify new bioactive compounds with broad-spectrum antiviral activity to exploit innovative solutions against these hazards. Recently, antimicrobial peptides (AMPs) have been recognized as promising antiviral agents. Indeed, while the antibacterial and antifungal effects of these molecules have been widely reported, their use as potential antiviral agents has not yet been fully investigated. Herein, the antiviral activity of previously identified or newly designed AMPs was evaluated against the non-enveloped RNA viruses, hepatitis A virus (HAV) and murine norovirus (MNV), a surrogate for human norovirus. Moreover, specific assays were performed to recognize at which stage of the viral infection cycle the peptides could function. The results showed that almost all peptides displayed virucidal effects, with about 90% of infectivity reduction in HAV or MNV. However, the decapeptide RiLK1 demonstrated, together with its antibacterial and antifungal properties, a notable reduction in viral infection for both HAV and MNV, possibly through direct interaction with viral particles causing their damage or hindering the recognition of cellular receptors. Hence, RiLK1 could represent a versatile antimicrobial agent effective against various foodborne pathogens including viruses, bacteria, and fungi.


Assuntos
Antivirais , Doenças Transmitidas por Alimentos , Animais , Humanos , Camundongos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antivirais/farmacologia , Antivirais/química , Doenças Transmitidas por Alimentos/prevenção & controle , Vírus da Hepatite A/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Norovirus/efeitos dos fármacos , Viroses/prevenção & controle
12.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796792

RESUMO

AIMS: Next generation sequencing (NGS) technology has been widely used in monitoring and identifying microbiomes in sewage. We aimed to evaluate the ability of NGS analysis in directly detecting enterovirus (EV) in sewage and to understand the diversity of EVs circulated in the residents in Weishan Lake region. METHODS AND RESULTS: Fourteen sewage samples were collected in Jining, Shandong Province, China from 2018 to 2019 and were parallelly investigated by the P1 amplicon-based NGS method and cell culture method. The results showed that 20 different serotypes belonging to species Enterovirus A (EV-A) (n = 5), EV-B (n = 13), and EV-C (n = 2) were identified by NGS in the sewage concentrates, which exceeded the number of types detected by cell culture method (n = 9). Echovirus 11 (E11), Coxsackievirus (CV) B5 and CVA9 were the most detected types in those sewage concentrates. Phylogenetic analysis revealed that E11 sequences obtained in this study belonged to genogroup D5 and had close genetic relationship with clinical sequences. CONCLUSIONS: Various EV serotypes circulated in populations near Weishan Lake. The combination of NGS technology into environmental surveillance will greatly contribute to improving our knowledge about EV circulation patterns in the population.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Esgotos , Filogenia , Lagos , Enterovirus/genética , Antígenos Virais/genética , China
13.
Euro Surveill ; 28(24)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37318763

RESUMO

Echovirus 11 (E11) has recently been associated with a series of nine neonatal cases of severe hepatitis in France. Here, we present severe hepatitis caused by E11 in a pair of twins. In one of the neonates, the clinical picture evolved to fulminant hepatitis. The E11 genome showed 99% nucleotide identity with E11 strains reported in the cases in France. Rapid genome characterisation using next generation sequencing is essential to identify new and more pathogenetic variants.


Assuntos
Infecções por Echovirus , Hepatite A , Hepatite , Necrose Hepática Massiva , Recém-Nascido , Humanos , Masculino , Itália/epidemiologia , França/epidemiologia , Enterovirus Humano B/genética , Infecções por Echovirus/diagnóstico , Infecções por Echovirus/epidemiologia
14.
Emerg Infect Dis ; 28(1): 20-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932461

RESUMO

Since 2012, the United States has reported a distinct syndrome of acute flaccid paralysis (AFP) with anterior myelitis, predominantly in children. This polio-like syndrome was termed acute flaccid myelitis (AFM). Australia routinely conducts AFP surveillance to exclude poliomyelitis. We reviewed 915 AFP cases in Australia for children <15 years of age during 2000‒2018 and reclassified a subset to AFM by using the US Council of State and Territorial Epidemiologists case definition. We confirmed 37 AFM cases by using magnetic resonance imaging findings and 4 probable AFM cases on the basis of cerebrospinal fluid pleocytosis. Nonpolio enteroviruses were detected in 33% of AFM cases from which stool samples were tested. Average annual AFM incidence was 0.07 cases/100,000 person-years in children <15 years of age. AFM occurred sporadically in Australia before 2010 but regularly since then, indicating sustained, albeit rare, clinical manifestation in children. The AFP surveillance system in Australia is well-positioned to identify future AFM cases.


Assuntos
Viroses do Sistema Nervoso Central , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Adolescente , Austrália/epidemiologia , Viroses do Sistema Nervoso Central/diagnóstico , Viroses do Sistema Nervoso Central/epidemiologia , Criança , Pré-Escolar , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , Humanos , Lactente , Mielite/diagnóstico , Mielite/epidemiologia , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/epidemiologia , Paralisia/diagnóstico , Paralisia/epidemiologia
15.
Virol J ; 19(1): 45, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303921

RESUMO

BACKGROUND: Enteroviruses (EVs) are considered the main causative agents responsible for aseptic meningitis worldwide. This study was conducted in the Monastir region of Tunisia in order to know the prevalence of EV infections in children with meningitis symptoms. Detected EV types were compared to those identified in wastewater samples. METHODS: Two hundred CSF samples collected from hospitalized patients suspected of having aseptic meningitis for an EV infection between May 2014 and May 2017 and 80 wastewater samples collected in the same time-period were analyzed. EV detection and genotyping were performed using PCR methods followed by sequencing. Phylogenetic analyses in the 3'-VP1 region were also carried-out. RESULTS: EVs were detected in 12% (24/200) CSF and in 35% (28/80) wastewater samples. EV genotyping was reached in 50% (12/24) CSF-positive samples and in 64% (18/28) sewage. Most frequent types detected in CSF were CVB3, E-30 and E-9 (25% each). In wastewater samples, the same EVs were identified, but also other types non-detected in CSF samples, such as E-17,CVA9 and CVB1 from EV species B, and EV-A71 and CVA8 from EV-A, suggesting their likely lower pathogenicity. Phylogenetic analysis showed that within the same type, different strains circulate in Tunisia. For some of the EV types such as E-9, E-11 or CVB3, the same strains were detected in CSF and wastewater samples. CONCLUSIONS: Epidemiological studies are important for the surveillance of the EV infections and to better understand the emergence of certain types and variants.


Assuntos
Infecções por Enterovirus , Enterovirus , Meningite Asséptica , Antígenos Virais , Líquido Cefalorraquidiano , Criança , Enterovirus/genética , Infecções por Enterovirus/epidemiologia , Genótipo , Humanos , Lactente , Meningite Asséptica/líquido cefalorraquidiano , Meningite Asséptica/epidemiologia , Filogenia , Tunísia/epidemiologia , Águas Residuárias
16.
Wiad Lek ; 75(10): 2419-2424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472272

RESUMO

OBJECTIVE: The aim: To study the role of enteroviruses (EV) in the development of ischemic stroke and its outcome. PATIENTS AND METHODS: Materials and methods: The main group (MG) included 72 patients with acute cerebrovascular disorders were examined using the National Institutes of Health Stroke Scale and Barthel Index. The comparison group (CG) included 35 patients without cerebrovascular disease. Viruses were isolated from patients' sera and identified in neutralization test. EV genomes were detected in polymerase chain reaction (PCR). Serological diagnosis was performed by enzyme-linked immunosorbent assay. RESULTS: Results: EV genomes were more frequently detected in the patients' sera in MG than in CG (23.6 ± 5.9% and 2.9 ± 2.8%, p <0.05). The greater level of neurological deficits was in patients with positive PCR test results comparatively with patients with negative PCR test results (11.76 ± 0.31 and 10.97 ± 0, 27, p = 0.040). The regression of neurological deficit during the treatment was a worse in patients with positive PCR test results and presence of specific IgG compared with patients with positive PCR test results and absence of specific IgG (11.2 ± 2.6% and 19.6 ± 2.4%, p = 0.031). CONCLUSION: Conclusions: The trigger role of EV in the development of IS is established. PCR is recommended for diagnosis of EV in patients with IS.


Assuntos
Infecções por Enterovirus , Enterovirus , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Enterovirus/genética , Infecções por Enterovirus/complicações , Infecções por Enterovirus/diagnóstico , Reação em Cadeia da Polimerase/métodos , Imunoglobulina G
17.
Clin Infect Dis ; 72(11): 2044-2048, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964217

RESUMO

Since 2014, cases of acute flaccid myelitis (AFM) have been reported in the United States in increasing numbers biennially, occurring in the late summer and early fall. Although there is unlikely to be a single causative agent of this syndrome, non-polio enteroviruses, including enterovirus D-68 (EV-D68), have had epidemiological and laboratory associations with AFM. Much remains to be known about AFM and AFM-associated enteroviruses, including disease pathogenesis and the best strategies for development of therapeutics or preventive modalities including vaccines. To catalyze research that addresses these scientific and clinical gaps, the National Institute of Allergy and Infectious Diseases convened a workshop entitled "AFM Preparedness: Addressing EV-D68 and Other AFM-Associated Enteroviruses" on 19-20 February 2020.


Assuntos
Viroses do Sistema Nervoso Central , Enterovirus Humano D , Mielite , Doenças Neuromusculares , Humanos , Estados Unidos
18.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075935

RESUMO

Human enteroviruses (EVs), including coxsackieviruses, the numbered enteroviruses, and echoviruses, cause a wide range of diseases, such as hand, foot, and mouth disease (HFMD), encephalitis, myocarditis, acute flaccid myelitis (AFM), pneumonia, and bronchiolitis. Therefore, broad-spectrum anti-EV drugs are urgently needed to treat EV infection. Here, we demonstrate that FNC (2'-deoxy-2'-ß-fluoro-4'-azidocytidine), a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs, including enterovirus 71 (EV71), coxsackievirus A16 (CA16), CA6, EVD68, and coxsackievirus B3 (CVB3), at the nanomolar level. The antiviral mechanism of FNC involves mainly positive- and negative-strand RNA synthesis inhibition by targeting and competitively inhibiting the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol), as demonstrated through quantitative real-time reverse transcription-PCR (RT-qPCR), in vitro 3Dpol activity, and isothermal titration calorimetry (ITC) experiments. We further demonstrated that FNC treatment every 2 days with 1 mg/kg of body weight in EV71 and CA16 infection neonatal mouse models successfully protected mice from lethal challenge with EV71 and CA16 viruses and reduced the viral load in various tissues. These findings provide important information for the clinical development of FNC as a broad-spectrum inhibitor of human EV pathogens.IMPORTANCE Human enterovirus (EV) pathogens cause various contagious diseases such as hand, foot, and mouth disease, encephalitis, myocarditis, acute flaccid myelitis, pneumonia, and bronchiolitis, which have become serious health threats. However, except for the EV71 vaccine on the market, there are no effective strategies to prevent and treat other EV pathogen infections. Therefore, broad-spectrum anti-EV drugs are urgently needed. In this study, we demonstrated that FNC, a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs at the nanomolar level. Further investigation revealed that FNC inhibits positive- and negative-strand RNA synthesis of EVs by interacting and interfering with the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol). Our findings demonstrate for the first time that FNC is an effective broad-spectrum inhibitor for human EV pathogens.


Assuntos
Azidas/farmacologia , Desoxicitidina/análogos & derivados , Enterovirus/genética , Replicação Viral/efeitos dos fármacos , Animais , Azidas/metabolismo , China , Infecções por Coxsackievirus/genética , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Infecções por Enterovirus/virologia , Camundongos , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Carga Viral/efeitos dos fármacos
19.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087467

RESUMO

Enterovirus replication requires the cellular protein GBF1, a guanine nucleotide exchange factor for small Arf GTPases. When activated, Arfs associate with membranes, where they regulate numerous steps of membrane homeostasis. The requirement for GBF1 implies that Arfs are important for replication, but which of the different Arfs function(s) during replication remains poorly understood. Here, we established cell lines expressing each of the human Arfs fused to a fluorescent tag and investigated their behavior during enterovirus infection. Arf1 was the first to be recruited to the replication organelles, where it strongly colocalized with the viral antigen 2B and mature virions but not double-stranded RNA. By the end of the infectious cycle, Arf3, Arf4, Arf5, and Arf6 were also concentrated on the replication organelles. Once on the replication membranes, all Arfs except Arf3 were no longer sensitive to inhibition of GBF1, suggesting that in infected cells they do not actively cycle between GTP- and GDP-bound states. Only the depletion of Arf1, but not other class 1 and 2 Arfs, significantly increased the sensitivity of replication to GBF1 inhibition. Surprisingly, depletion of Arf6, a class 3 Arf, normally implicated in plasma membrane events, also increased the sensitivity to GBF1 inhibition. Together, our results suggest that GBF1-dependent Arf1 activation directly supports the development and/or functioning of the replication complexes and that Arf6 plays a previously unappreciated role in viral replication. Our data reveal a complex pattern of Arf activation in enterovirus-infected cells that may contribute to the resilience of viral replication in different cellular environments.IMPORTANCE Enteroviruses include many known and emerging pathogens, such as poliovirus, enteroviruses 71 and D68, and others. However, licensed vaccines are available only against poliovirus and enterovirus 71, and specific anti-enterovirus therapeutics are lacking. Enterovirus infection induces the massive remodeling of intracellular membranes and the development of specialized domains harboring viral replication complexes, replication organelles. Here, we investigated the roles of small Arf GTPases during enterovirus infection. Arfs control distinct steps in intracellular membrane traffic, and one of the Arf-activating proteins, GBF1, is a cellular factor required for enterovirus replication. We found that all Arfs expressed in human cells, including Arf6, normally associated with the plasma membrane, are recruited to the replication organelles and that Arf1 appears to be the most important Arf for enterovirus replication. These results document the rewiring of the cellular membrane pathways in infected cells and may provide new ways of controlling enterovirus infections.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Infecções por Enterovirus/metabolismo , Enterovirus/fisiologia , Compartimentos de Replicação Viral/metabolismo , Fatores de Ribosilação do ADP/genética , Antígenos Virais/metabolismo , Enterovirus/classificação , Infecções por Enterovirus/virologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Viral/metabolismo , Replicação Viral
20.
J Med Virol ; 93(8): 4720-4728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33458840

RESUMO

Enteroviruses (EVs) are RNA viruses that can cause many clinical syndromes including acute flaccid paralysis (AFP). Within the global polio laboratory network, EVs are categorized either as polioviruses or non-polio enteroviruses (NPEVs). Specific NPEVs have been described in polio-like residual paralytic events in AFP patients. Retrospective analysis of 112 NPEV isolates from AFP patients was performed and thirty one NPEV types were identified of which 91% were Enterovirus B and 9% were Enterovirus A species. The NPEVs were distributed across the country with most patients in the eastern region (41/89; 46.1%). The highest proportion of patients were children less than 5 years (77/89; 86.5%) and male patients were more common (54/89; 60.7%). Echovirus 11 (11/89; 12.4%) was frequently observed and phylogenetic analysis of these sequences revealed high diversity. Coxsackievirus B5 (CV-B5), CV-B6, E21, and EV-B69 were only seen in patients with residual paralysis. Analyses of the EV-A71 sequence indicated a unique genogroup.


Assuntos
Viroses do Sistema Nervoso Central/virologia , Infecções por Enterovirus/virologia , Enterovirus/genética , Enterovirus/isolamento & purificação , Genótipo , Mielite/virologia , Doenças Neuromusculares/virologia , Filogenia , Adolescente , Viroses do Sistema Nervoso Central/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Enterovirus/classificação , Infecções por Enterovirus/epidemiologia , Monitoramento Epidemiológico , Fezes/virologia , Feminino , Variação Genética , Humanos , Masculino , Mielite/epidemiologia , Doenças Neuromusculares/epidemiologia , Poliomielite/virologia , Estudos Retrospectivos , Análise de Sequência de DNA , Fatores Sexuais , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA