Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Issues Mol Biol ; 45(4): 2847-2860, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185710

RESUMO

Pompe disease (PD) is a monogenic autosomal recessive disorder caused by biallelic pathogenic variants of the GAA gene encoding lysosomal alpha-glucosidase; its loss causes glycogen storage in lysosomes, mainly in the muscular tissue. The genotype-phenotype correlation has been extensively discussed, and caution is recommended when interpreting the clinical significance of any mutation in a single patient. As there is no evidence that environmental factors can modulate the phenotype, the observed clinical variability in PD suggests that genetic variants other than pathogenic GAA mutations influence the mechanisms of muscle damage/repair and the overall clinical picture. Genes encoding proteins involved in glycogen synthesis and catabolism may represent excellent candidates as phenotypic modifiers of PD. The genes analyzed for glycogen synthesis included UGP2, glycogenin (GYG1-muscle, GYG2, and other tissues), glycogen synthase (GYS1-muscle and GYS2-liver), GBE1, EPM2A, NHLRC1, GSK3A, and GSK3B. The only enzyme involved in glycogen catabolism in lysosomes is α-glucosidase, which is encoded by GAA, while two cytoplasmic enzymes, phosphorylase (PYGB-brain, PGL-liver, and PYGM-muscle) and glycogen debranching (AGL) are needed to obtain glucose 1-phosphate or free glucose. Here, we report the potentially relevant variants in genes related to glycogen synthesis and catabolism, identified by whole exome sequencing in a group of 30 patients with late-onset Pompe disease (LOPD). In our exploratory analysis, we observed a reduced number of variants in the genes expressed in muscles versus the genes expressed in other tissues, but we did not find a single variant that strongly affected the phenotype. From our work, it also appears that the current clinical scores used in LOPD do not describe muscle impairment with enough qualitative/quantitative details to correlate it with genes that, even with a slightly reduced function due to genetic variants, impact the phenotype.

2.
Adv Exp Med Biol ; 1415: 183-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440032

RESUMO

Inherited retinal diseases (IRDs) are an extremely diverse group of ocular disorders characterized by progressive loss of photoreceptors leading to blindness. So far, pathogenic variants in over 300 genes are reported to structurally and functionally affect the retina resulting in visual impairment. Around 15% of all IRD mutations are known to affect an essential regulatory mechanism, pre-mRNA splicing, which contributes to the transcriptomic diversity. These variants disrupt potential donor and acceptor splice sites as well as other crucial cis-acting elements resulting in aberrant splicing. One group of these elements, the exonic splicing enhancers (ESEs), are involved in promoting exon definition and are likely to harbor "hidden" mutations since sequence-analyzing pipelines cannot identify them efficiently. The main focus of this review is to discuss the molecular mechanisms behind various exonic variants affecting splice sites and ESEs that lead to impaired splicing which in turn result in an IRD pathology.


Assuntos
Splicing de RNA , Doenças Retinianas , Humanos , Splicing de RNA/genética , Mutação , Éxons/genética , Doenças Retinianas/genética , Retina , Processamento Alternativo
3.
Epilepsia ; 56(2): 188-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25489633

RESUMO

OBJECTIVE: Screening for specific coding mutations in the EFHC1 gene has been proposed as a means of assessing susceptibility to juvenile myoclonic epilepsy (JME). To clarify the role of these mutations, especially those reported to be highly penetrant, we sought to measure the frequency of exonic EFHC1 mutations across multiple population samples. METHODS: To find and test variants of large effect, we sequenced all EFHC1 exons in 23 JME and 23 non-JME idiopathic generalized epilepsy (IGE) Hispanic patients, and 60 matched controls. We also genotyped specific EFHC1 variants in IGE cases and controls from multiple ethnic backgrounds, including 17 African American IGE patients, with 24 matched controls, and 92 Caucasian JME patients with 103 matched controls. These variants are reported to be pathogenic, but are also found among unphenotyped individuals in public databases. All subjects were from the New York City metro area and all controls were required to have no family history of seizures. RESULTS: We found the reportedly pathogenic EFHC1 P77T-R221H (rs149055334-rs79761183) JME haplotype in one Hispanic control and in two African American controls. Public databases also show that the EFHC1 P77T-R221H JME haplotype is present in unphenotyped West African ancestry populations, and we show that it can be found at appreciable frequency in healthy individuals with no family history of epilepsy. We also found a novel splice-site mutation in a single Hispanic JME patient, the effect of which is unknown. SIGNIFICANCE: Our findings raise questions about the effect of reportedly pathogenic EFHC1 mutations on JME. One intriguing possibility is that some EFHC1 mutations may be pathogenic only when introduced into specific genetic backgrounds. By focusing on data from multiple populations, including the understudied Hispanic and Black/African American populations, our study highlights that for complex traits like JME, the body of evidence necessary to infer causality is high.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Epilepsia Generalizada/genética , Predisposição Genética para Doença , Mutação/genética , Epilepsia Mioclônica Juvenil/genética , Idade de Início , Genótipo , Humanos , Epilepsia Mioclônica Juvenil/diagnóstico , Linhagem
4.
BMC Med Genomics ; 14(1): 142, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059054

RESUMO

BACKGROUND: Allelic imbalance (AI) in tumors is caused by chromosomal and sub-chromosomal gains and losses. RESULTS: We evaluated AI at 109,086 germline exonic SNP loci in four cancer types, and identified a set of SNPs that demonstrate strong tumor allele specificity in AI events. Further analyses demonstrated that these alleles show consistently different frequencies in the cancer population compared to the healthy population and are significantly enriched for predicted protein-damaging variants. Moreover, genes harboring SNPs that demonstrate allele specificity are enriched for cancer-related biological processes and are more likely to be essential in cancer cells. CONCLUSIONS: In summary, our study provides a unique and complementary method to identify genes and variants that are relevant to carcinogenesis.


Assuntos
Desequilíbrio Alélico
5.
J Rheumatol ; 46(2): 184-189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30442821

RESUMO

OBJECTIVE: Findings from previous genome-wide association studies indicated an association of the NOTCH4 gene with systemic sclerosis (SSc). This is a followup study to fine-map exonic variants of NOTCH4 in SSc. METHODS: All exons of NOTCH4 were sequenced and analyzed in a total of 1006 patients with SSc and 1004 controls of US white ancestry with the Ion Torrent system. Identified SSc-associated variants were confirmed with Sanger sequencing, and then examined in a Chinese Han cohort consisting of 576 patients with SSc and 574 controls. The NOTCH4 variants were analyzed for association with SSc as a whole and with SSc clinical and autoantibody subtypes with and without the influence of specific HLA-class II alleles that had been previously identified as major genetic factors in SSc. RESULTS: A total of 12 SSc-associated and SSc subtype-associated exonic variants of NOTCH4 were identified in the US cohort. Three of them are nonsynonymous single-nucleotide polymorphisms and 1 is a CTG tandem repeat that encodes for a poly-leucine, all of which are located in the NOTCH4 extracellular domain (NECD). Conditional logistic regression analysis on SSc-associated HLA-class II alleles indicated an independent association of the NOTCH4 variants with SSc autoantibody subtypes. Analysis of the Chinese cohort supported a genetic contribution of NOTCH4 to SSc and its subtypes. CONCLUSION: Multiple NOTCH4 exonic variants were associated with SSc and/or SSc subtypes. Several of these variants encode nonsynonymous sequence changes occurring in the NECD, which implicates a potentially functional effect of NOTCH4.


Assuntos
Éxons/genética , Receptor Notch4/genética , Escleroderma Sistêmico/genética , Alelos , Povo Asiático/genética , Autoanticorpos/genética , Seguimentos , Predisposição Genética para Doença/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Modelos Logísticos , Polimorfismo de Nucleotídeo Único/genética , Escleroderma Sistêmico/sangue , Escleroderma Sistêmico/etnologia , Sequências de Repetição em Tandem/genética , População Branca/genética
6.
DNA Repair (Amst) ; 66-67: 50-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29747023

RESUMO

Head and neck cancer (HNC), the sixth most common cancer globally, stands second in India. In Northeast (NE) India, it is the sixth most common cause of death in males and seventh in females. Prolonged tobacco and alcohol consumption constitute the major etiological factors for HNC development, which induce DNA damage. Therefore, DNA repair pathway is a crucial system in maintaining genomic integrity and preventing carcinogenesis. The present work was aimed to predict the consequence of significant germline variants of the DNA repair genes in disease predisposition. Whole exome sequencing was performed in Ion Proton™ platform on 15 case-control samples from the HNC-prevalent states of Manipur, Mizoram, and Nagaland. Variant annotation was done in Ion Reporter™ as well as wANNOVAR. Subsequent statistical and bioinformatics analysis identified significant exonic and intronic variants associated with HNC. Amongst our observed variants, 78.6% occurred in ExAC, 94% reported in dbSNP and 5.8% & 9.3% variants were present in ClinVar and HGMD, respectively. The total variants were dispersed among 199 genes with DSBR and FA pathway being the most mutated pathways. The allelic association test suggested that the intronic variants in HLTF and RAD52 gene significantly associated (P < 0.05) with the risk (OR > 5), while intronic variants in PARP4, RECQL5, EXO1 and PER1 genes and exonic variant in TDP2 gene showed protection (OR < 1) for HNC. MDR analysis proposed the exonic variants in MSH6, BRCA2, PALB2 and TP53 genes and intronic variant in RECQL5 genetic region working together during certain phase of DNA repair mechanism for HNC causation. In addition, other intronic and 3'UTR variations caused modifications in the transcription factor binding sites and miRNA target sites associated with HNC. Large-scale validation in NE Indian population, in-depth structure prediction and subsequent simulation of our recognized polymorphisms is necessary to identify true causal variants related to HNC.


Assuntos
Reparo do DNA , Predisposição Genética para Doença , Neoplasias de Cabeça e Pescoço/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Enzimas Reparadoras do DNA/genética , Estudos de Associação Genética , Genômica , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Índia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA