Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(17): e0069821, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160273

RESUMO

Hypersaline microbial mats are dense microbial ecosystems capable of performing complete element cycling and are considered analogs of early Earth and hypothetical extraterrestrial ecosystems. We studied the functionality and limits of key biogeochemical processes, such as photosynthesis, aerobic respiration, and sulfur cycling, in salt crust-covered microbial mats from a tidal flat at the coast of Oman. We measured light, oxygen, and sulfide microprofiles as well as sulfate reduction rates at salt saturation and in flood conditions and determined fine-scale stratification of pigments, biomass, and microbial taxa in the resident microbial community. The salt crust did not protect the mats against irradiation or evaporation. Although some oxygen production was measurable at salinities of ≤30% (wt/vol) in situ, at saturation-level salinity (40%), oxygenic photosynthesis was completely inhibited and only resumed 2 days after reducing the porewater salinity to 12%. Aerobic respiration and active sulfur cycling occurred at low rates under salt saturation and increased strongly upon salinity reduction. Apart from high relative abundances of Chloroflexi, photoheterotrophic Alphaproteobacteria, Bacteroidetes, and Archaea, the mat contained a distinct layer harboring filamentous Cyanobacteria, which is unusual for such high salinities. Our results show that the diverse microbial community inhabiting this salt flat mat ultimately depends on periodic salt dilution to be self-sustaining and is rather adapted to merely survive salt saturation than to thrive under the salt crust. IMPORTANCE Due to their abilities to survive intense radiation and low water availability, hypersaline microbial mats are often suggested to be analogs of potential extraterrestrial life. However, even the limitations imposed on microbial processes by saturation-level salinity found on Earth have rarely been studied in situ. While abundance and diversity of microbial life in salt-saturated environments are well documented, most of our knowledge on process limitations stems from culture-based studies, few in situ studies, and theoretical calculations. In particular, oxygenic photosynthesis has barely been explored beyond 5 M NaCl (28% wt/vol). By applying a variety of biogeochemical and molecular methods, we show that despite abundance of photoautotrophic microorganisms, oxygenic photosynthesis is inhibited in salt-crust-covered microbial mats at saturation salinities, while rates of other energy generation processes are decreased several-fold. Hence, the complete element cycling required for self-sustaining microbial communities only occurs at lower salt concentrations.


Assuntos
Archaea/metabolismo , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Cloreto de Sódio/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Sedimentos Geológicos/análise , Microbiota , Oxigênio/análise , Oxigênio/metabolismo , Fotossíntese , Filogenia , Cloreto de Sódio/análise , Enxofre/análise , Enxofre/metabolismo
2.
Microbiol Mol Biol Rev ; 88(1): e0020022, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38179930

RESUMO

SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.


Assuntos
Artefatos , Fungos
3.
Front Microbiol ; 10: 780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037068

RESUMO

Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.

5.
Fungal Biol ; 117(10): 692-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24119407

RESUMO

Polyextremotolerant black yeast-like fungi thrive in moderately hostile environments where they are concomitantly subjected to several types of stress, such as toxicity, scarce nutrient availability, and high or low temperature extremes. Their ability to assimilate alkylbenzenes (toxic environmental pollutants) enhances their growth in harsh conditions, including on railway ties. Samples were collected using cotton swabs, premoistened with physiological saline, from 658 oak and concrete railway ties at six train stations in Turkey at altitudes ranging between 1026 and 1427 m. The samples were inoculated on malt extract agar supplemented with chloramphenicol, and incubated at 26 °C for 4 weeks. Twenty-four samples (3.6 %), 17 from oak and 7 from concrete (5.6 % vs. 2 %; P = 0.02), tested positive for fungi. Exophiala crusticola was found to be the most common species (n = 13), followed by Exophiala phaeomuriformis (n = 7) and Exophiala heteromorpha (n = 4). These results suggest that hydrocarbons, particularly creosote-treated oak woods, support the growth of black yeasts, some of which are opportunists in humans.


Assuntos
Ecossistema , Microbiologia Ambiental , Leveduras/classificação , Leveduras/isolamento & purificação , Altitude , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Técnicas Microbiológicas , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA