Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.945
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 103(1): 787-854, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007181

RESUMO

An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.


Assuntos
Canalopatias , Glomerulosclerose Segmentar e Focal , Nefropatias , Humanos , Canal de Cátion TRPC6/metabolismo , Canalopatias/metabolismo , Canais de Cátion TRPC/metabolismo , Glomérulos Renais/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Nefropatias/metabolismo
2.
Immunity ; 51(4): 625-637.e3, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31564469

RESUMO

Preventing aberrant immune responses against the microbiota is essential for the health of the host. Microbiota-shed pathogen-associated molecular patterns translocate from the gut lumen into systemic circulation. Here, we examined the role of hemolymph (insect blood) filtration in regulating systemic responses to microbiota-derived peptidoglycan. Drosophila deficient for the transcription factor Klf15 (Klf15NN) are viable but lack nephrocytes-cells structurally and functionally homologous to the glomerular podocytes of the kidney. We found that Klf15NN flies were more resistant to infection than wild-type (WT) counterparts but exhibited a shortened lifespan. This was associated with constitutive Toll pathway activation triggered by excess peptidoglycan circulating in Klf15NN flies. In WT flies, peptidoglycan was removed from systemic circulation by nephrocytes through endocytosis and subsequent lysosomal degradation. Thus, renal filtration of microbiota-derived peptidoglycan maintains immune homeostasis in Drosophila, a function likely conserved in mammals and potentially relevant to the chronic immune activation seen in settings of impaired blood filtration.


Assuntos
Infecções Bacterianas/imunologia , Tecido Conjuntivo/fisiologia , Drosophila/fisiologia , Glomérulos Renais/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Podócitos/fisiologia , Animais , Animais Geneticamente Modificados , Secreções Corporais , Proteínas de Drosophila/metabolismo , Endocitose , Homeostase , Imunidade Inata , Mamíferos , Microbiota , Receptores Toll-Like/metabolismo
3.
Circ Res ; 132(4): 415-431, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36700539

RESUMO

BACKGROUND: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.


Assuntos
Vesículas Extracelulares , MicroRNAs , Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/metabolismo , Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(36): e2120538119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037347

RESUMO

Viscous streaming refers to the rectified, steady flows that emerge when a liquid oscillates around an immersed microfeature. Relevant to microfluidics, the resulting local, strong inertial effects allow manipulation of fluid and particles effectively, within short time scales and compact footprints. Nonetheless, practically, viscous streaming has been stymied by a narrow set of achievable flow topologies, limiting scope and application. Here, by moving away from classically employed microfeatures of uniform curvature, we experimentally show how multicurvature designs, computationally obtained, give rise, instead, to rich flow repertoires. The potential utility of these flows is then illustrated in compact, robust, and tunable devices for enhanced manipulation, filtering, and separation of both synthetic and biological particles. Overall, our mixed computational/experimental approach expands the scope of viscous streaming application, with opportunities in manufacturing, environment, health, and medicine, from particle self-assembly to microplastics removal.


Assuntos
Simulação por Computador , Microfluídica , Técnicas de Química Analítica , Viscosidade
5.
Nano Lett ; 24(15): 4462-4470, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574275

RESUMO

Micro/nanofiber-based face masks are recommended as personal protective equipment (PPE) against particulate matter (PM), especially PM0.3. Ensuring thermal comfort in daily use face masks is essential in many situations. Here, radiative thermal management is introduced into face masks to elevate the user comfort. An interlayered poly(lactic acid) (PLA) micro/nanofibrous filter effectively captures PM0.3 (99.69%) with minimal pressure drop (49 Pa). Thermal regulation is accomplished by controlling the mid-infrared (MIR) emissivity of the face mask's outer surface. Cooling face masks feature cotton nonwovens with high MIR emissivity (90.7%) for heat dissipation, while warming face masks utilize perforated Al/PE films with minimal MIR emissivity (10.7%) for warmth retention. Skin temperature measurements indicate that the skin covered by the cooling face mask could be 1.1 °C lower than that covered by the 3M face mask, while the skin covered by the warming face mask could be 1.3 °C higher than that covered by the 3M face mask.

6.
Nano Lett ; 24(9): 2861-2869, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408922

RESUMO

Advanced portable healthcare devices with high efficiencies, small pressure drops, and high-temperature resistance are urgently desired in harsh environments with high temperatures, high humidities, and high levels of atmospheric pollution. Triboelectric nanogenerators (TENGs), which serve as energy converters in a revolutionary self-powered sensor device, present a sustainable solution for meeting these requirements. In this work, we developed a porous negative triboelectric material by synthesizing ZIF-8 on the surface of a cellulose/graphene oxide aerogel, grafting it with trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane, and adding a negative corona treatment, and it was combined with a positive triboelectric material to create a cellulose nanofiber-based TENG self-powered filter. The devices achieved a balance between a small pressure drop (53 Pa) and high filtration efficiency (98.97%, 99.65%, and 99.93% for PM0.3, PM0.5, and PM1, respectively), demonstrating robust filtration properties at high temperatures and high humidities. Our work provides a new approach for developing self-powered wearable healthcare devices with excellent air filtration properties.

7.
BMC Bioinformatics ; 25(1): 61, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321434

RESUMO

BACKGROUND: The rapid advancement of next-generation sequencing (NGS) machines in terms of speed and affordability has led to the generation of a massive amount of biological data at the expense of data quality as errors become more prevalent. This introduces the need to utilize different approaches to detect and filtrate errors, and data quality assurance is moved from the hardware space to the software preprocessing stages. RESULTS: We introduce MAC-ErrorReads, a novel Machine learning-Assisted Classifier designed for filtering Erroneous NGS Reads. MAC-ErrorReads transforms the erroneous NGS read filtration process into a robust binary classification task, employing five supervised machine learning algorithms. These models are trained on features extracted through the computation of Term Frequency-Inverse Document Frequency (TF_IDF) values from various datasets such as E. coli, GAGE S. aureus, H. Chr14, Arabidopsis thaliana Chr1 and Metriaclima zebra. Notably, Naive Bayes demonstrated robust performance across various datasets, displaying high accuracy, precision, recall, F1-score, MCC, and ROC values. The MAC-ErrorReads NB model accurately classified S. aureus reads, surpassing most error correction tools with a 38.69% alignment rate. For H. Chr14, tools like Lighter, Karect, CARE, Pollux, and MAC-ErrorReads showed rates above 99%. BFC and RECKONER exceeded 98%, while Fiona had 95.78%. For the Arabidopsis thaliana Chr1, Pollux, Karect, RECKONER, and MAC-ErrorReads demonstrated good alignment rates of 92.62%, 91.80%, 91.78%, and 90.87%, respectively. For the Metriaclima zebra, Pollux achieved a high alignment rate of 91.23%, despite having the lowest number of mapped reads. MAC-ErrorReads, Karect, and RECKONER demonstrated good alignment rates of 83.76%, 83.71%, and 83.67%, respectively, while also producing reasonable numbers of mapped reads to the reference genome. CONCLUSIONS: This study demonstrates that machine learning approaches for filtering NGS reads effectively identify and retain the most accurate reads, significantly enhancing assembly quality and genomic coverage. The integration of genomics and artificial intelligence through machine learning algorithms holds promise for enhancing NGS data quality, advancing downstream data analysis accuracy, and opening new opportunities in genetics, genomics, and personalized medicine research.


Assuntos
Arabidopsis , Inteligência Artificial , Teorema de Bayes , Escherichia coli , Staphylococcus aureus , Software , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizado de Máquina , Análise de Sequência de DNA
8.
Am J Physiol Cell Physiol ; 326(2): C567-C572, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105752

RESUMO

Incretin-based therapy is an antidiabetic and antiobesity approach mimicking glucagon-like peptide-1 (GLP-1) with additional end-organ protection. This review solely focuses on randomized, controlled mechanistic human studies, investigating the renal effects of GLP-1. There is no consensus about the localization of GLP-1 receptors (GLP-1Rs) in human kidneys. Rodent and primate data suggest GLP-1R distribution in smooth muscle cells in the preglomerular vasculature. Native GLP-1 and GLP-1R agonists elicit renal effects. Independently of renal plasma flow and glomerular filtration rate, GLP-1 has a natriuretic effect but only during volume expansion. This is associated with high renal extraction of GLP-1, suppression of angiotensin II, and increased medullary as well as cortical perfusion. These observations may potentially indicate that impaired GLP-1 sensing could establish a connection between salt sensitivity and insulin resistance. It is concluded that a functional GLP-1 kidney axis exists in humans, which may play a role in renoprotection.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Rim , Animais , Humanos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Transdução de Sinais , Receptor do Peptídeo Semelhante ao Glucagon 1
9.
J Biol Chem ; 299(12): 105459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977222

RESUMO

The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.


Assuntos
Colágeno Tipo IV , Membrana Basal Glomerular , Mamíferos , Animais , Anuros , Colágeno Tipo IV/classificação , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/química , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/fisiologia , Feiticeiras (Peixe) , Mamíferos/genética , Mamíferos/metabolismo , Mamíferos/fisiologia , Tubarões , Especificidade da Espécie , Urodelos
10.
Am J Physiol Renal Physiol ; 327(2): F199-F207, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841747

RESUMO

Chronic kidney disease is the loss of renal function that can occur from aging or through a myriad of other disease states. Rising serum concentrations of kynurenine, a tryptophan metabolite, have been shown to correlate with increasing severity of chronic kidney disease. This study used chronic intravenous infusion in conscious male Sprague-Dawley rats to test the hypothesis that kynurenine can induce renal damage and promote alterations in blood pressure, heart rate, and decreased renal function. We found that kynurenine infusion increased mean arterial pressure, increased the maximum and minimum range of heart rate, decreased glomerular filtration rate, and induced kidney damage in a dose-dependent manner. This study shows that kynurenine infusion can promote kidney disease in healthy, young rats, implying that the increase in kynurenine levels associated with chronic kidney disease may establish a feed-forward mechanism that exacerbates the loss of renal function.NEW & NOTEWORTHY In humans, an elevated serum concentration of kynurenine has long been associated with negative outcomes in various disease states as well as in aging. However, it has been unknown whether these increased kynurenine levels are mediating the disorders or simply associated with them. This study shows that chronically infusing kynurenine can contribute to the development of hypertension and kidney impairment. The mechanism of this action remains to be determined in future studies.


Assuntos
Pressão Arterial , Taxa de Filtração Glomerular , Rim , Cinurenina , Ratos Sprague-Dawley , Triptofano , Animais , Cinurenina/sangue , Cinurenina/metabolismo , Masculino , Pressão Arterial/efeitos dos fármacos , Triptofano/sangue , Triptofano/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Infusões Intravenosas , Frequência Cardíaca/efeitos dos fármacos , Ratos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/sangue
11.
Am J Physiol Renal Physiol ; 327(2): F224-F234, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867674

RESUMO

We tested the hypothesis that compliance with the National Institute for Occupational Safety and Health (NIOSH) heat stress recommendations will prevent reductions in glomerular filtration rate (GFR) across a range of wet-bulb globe temperatures (WBGTs) and work-rest ratios at a fixed work intensity. We also tested the hypothesis that noncompliance would result in a reduction in GFR compared with a work-rest matched compliant trial. Twelve healthy adults completed five trials (four NIOSH compliant and one noncompliant) that consisted of 4 h of exposure to a range of WBGTs. Subjects walked on a treadmill (heat production: approximately 430 W) and work-rest ratios (work/h: 60, 45, 30, and 15 min) were prescribed as a function of WBGT (24°C, 26.5°C, 28.5°C, 30°C, and 36°C), and subjects drank a sport drink ad libitum. Peak core temperature (TC) and percentage change in body weight (%ΔBW) were measured. Creatinine clearance measured pre- and postexposure provided a primary marker of GFR. Peak TC did not differ among NIOSH-compliant trials (P = 0.065) but differed between compliant versus noncompliant trials (P < 0.001). %ΔBW did not differ among NIOSH-compliant trials (P = 0.131) or between compliant versus noncompliant trials (P = 0.185). Creatinine clearance did not change or differ among compliant trials (P ≥ 0.079). Creatinine clearance did not change or differ between compliant versus noncompliant trials (P ≥ 0.661). Compliance with the NIOSH recommendations maintained GFR. Surprisingly, despite a greater heat strain in a noncompliant trial, GFR was maintained highlighting the potential relative importance of hydration.NEW & NOTEWORTHY We highlight that glomerular filtration rate (GFR) is maintained during simulated occupational heat stress across a range of total work, work-rest ratios, and wet-bulb globe temperatures with ad libitum consumption of an electrolyte and sugar-containing sports drink. Compared with a work-rest matched compliant trial, noncompliance resulted in augmented heat strain but did not induce a reduction in GFR likely due to an increased relative fluid intake and robust fluid conservatory responses.


Assuntos
Creatinina , Taxa de Filtração Glomerular , Transtornos de Estresse por Calor , Temperatura Alta , Humanos , Masculino , Adulto , Feminino , Creatinina/sangue , Transtornos de Estresse por Calor/fisiopatologia , Exposição Ocupacional/efeitos adversos , Adulto Jovem , Resposta ao Choque Térmico/fisiologia , Estados Unidos , Rim/metabolismo , National Institute for Occupational Safety and Health, U.S. , Doenças Profissionais/fisiopatologia , Doenças Profissionais/prevenção & controle
12.
Am J Physiol Renal Physiol ; 326(3): F369-F381, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205541

RESUMO

Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.


Assuntos
Podócitos , Humanos , Animais , Camundongos , Ratos , Peixe-Zebra , Glomérulos Renais , Barreira de Filtração Glomerular , Proteínas de Peixe-Zebra , Mamíferos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38269408

RESUMO

Diabetes (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. The combination of DM and HTN significantly accelerates development of renal injury; however, the underlying mechanisms of this synergy are still poorly understood. This study assessed whether mitochondria (MT) dysfunction is essential in developing renal injury in a rat model with combined DM and HTN. Type 1 DM was induced in Wistar rats by streptozotocin (STZ). HTN was induced six weeks later by inter-renal aorta constriction between the renal arteries, so that right kidneys were exposed to HTN while left kidneys were exposed to normotension. Kidneys exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion (UAE). In contrast, kidneys exposed to DM plus 8 weeks HTN had significantly increased UAE and glomerular structural damage with reduced glomerular filtration rate. Marked increases in MT-derived reactive oxygen species (ROS) were also observed in right kidneys exposed to HTN+DM. We further tested whether treatment with MT-targeted antioxidant (MitoTEMPO) after the onset of HTN attenuates renal injury in rats with DM+HTN. Results show that kidneys in DM+AC+MitoTEMPO rats had lower UAE, less glomerular damage, and preserved MT function compared to untreated DM+AC rats. Our studies indicate that MT-derived ROS play a major role in promoting kidney dysfunction when DM is combined with HTN. Preserving MT function might be a potential therapeutic approach to halt the development of renal injury when DM coexists with HTN.

14.
Curr Issues Mol Biol ; 46(6): 5812-5824, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921018

RESUMO

Extracellular vesicles (EVs) have been identified as important mediators for cell-to-cell communication. Citrus-based EVs in particular offer an excellent platform for nutraceutical delivery systems, as their endemic cargo includes micronutrients (e.g., ascorbic acid), which contribute to their antioxidant capacity. Despite being extensively investigated as to their therapeutic and diagnostic potential, their cargo is inherently unstable and thus directly affected by their storage and preservation. In this study, EVs were isolated from citrus fruit using tangential flow filtration and evaluated for their physicochemical characteristics, antioxidant activity and effects on human cells. To assess how their isolation and preservation methods affect these properties, the EVs were tested immediately after isolation (from fresh and freeze-thawed juices) or following freeze-drying. A measurable biological effect of cryoprotection on citrus-derived EVs was evident, whether during or after isolation. This was more pronounced in the cell-based assays, ranging from -4% to +32% in human skin fibroblast proliferation. Nevertheless, the effects on human cancer cells varied depending on the cell line. Although these results should be considered preliminary observations, subject to further investigation, it is safe to state that any type of preservation is expected to impact the EVs' biological activity.

15.
Kidney Int ; 105(3): 582-592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006943

RESUMO

Creatinine and cystatin-C are recommended for estimating glomerular filtration rate (eGFR) but accuracy is suboptimal. Here, using untargeted metabolomics data, we sought to identify candidate filtration markers for a new targeted assay using a novel approach based on their maximal joint association with measured GFR (mGFR) and with flexibility to consider their biological properties. We analyzed metabolites measured in seven diverse studies encompasing 2,851 participants on the Metabolon H4 platform that had Pearson correlations with log mGFR and used a stepwise approach to develop models to < -0.5 estimate mGFR with and without inclusion of creatinine that enabled selection of candidate markers. In total, 456 identified metabolites were present in all studies, and 36 had correlations with mGFR < -0.5. A total of 2,225 models were developed that included these metabolites; all with lower root mean square errors and smaller coefficients for demographic variables compared to estimates using untargeted creatinine. Seventeen metabolites were chosen, including 12 new candidate filtration markers. The selected metabolites had strong associations with mGFR and little dependence on demographic factors. Candidate metabolites were identified with maximal joint association with mGFR and minimal dependence on demographic variables across many varied clinical settings. These metabolites are excreted in urine and represent diverse metabolic pathways and tubular handling. Thus, our data can be used to select metabolites for a multi-analyte eGFR determination assay using mass spectrometry that potentially offers better accuracy and is less prone to non-GFR determinants than the current eGFR biomarkers.


Assuntos
Metabolômica , Insuficiência Renal Crônica , Humanos , Taxa de Filtração Glomerular , Creatinina , Biomarcadores
16.
Kidney Int ; 105(6): 1212-1220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514000

RESUMO

Accurate assessment of the glomerular filtration rate (GFR) is crucial for researching kidney disease in rats. Although validation of methods that assess GFR is crucial, large-scale comparisons between different methods are lacking. Both transcutaneous GFR (tGFR) and a newly developed estimated GFR (eGFR) equation by our group provide a low-invasive approach enabling repeated measurements. The tGFR is a single bolus method using FITC-labeled sinistrin to measure GFR based on half-life of the transcutaneous signal, whilst the eGFR is based on urinary sinistrin clearance. Here, we retrospectively compared tGFR, using both 1- and 3- compartment models (tGFR_1c and tGFR_3c, respectively) to the eGFR in a historic cohort of 43 healthy male rats and 84 male rats with various models of chronic kidney disease. The eGFR was on average considerably lower than tGFR-1c and tGFR-3c (mean differences 855 and 216 µL/min, respectively) and only 20 and 47% of measurements were within 30% of each other, respectively. The relative difference between eGFR and tGFR was highest in rats with the lowest GFR. Possible explanations for the divergence are problems inherent to tGFR, such as technical issues with signal measurement, description of the signal kinetics, and translation of half-life to tGFR, which depends on distribution volume. The unknown impact of isoflurane anesthesia used in determining mGFR remains a limiting factor. Thus, our study shows that there is a severe disagreement between GFR measured by tGFR and eGFR, stressing the need for more rigorous validation of the tGFR and possible adjustments to the underlying technique.


Assuntos
Modelos Animais de Doenças , Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Animais , Masculino , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/urina , Insuficiência Renal Crônica/diagnóstico , Ratos , Rim/fisiopatologia , Ratos Sprague-Dawley , Estudos Retrospectivos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/administração & dosagem , Reprodutibilidade dos Testes , Eliminação Renal/fisiologia , Fluoresceínas , Oligossacarídeos
17.
Kidney Int ; 105(3): 629-637, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101514

RESUMO

Estimating glomerular filtration rate (GFR) is important in daily practice to assess kidney function and adapting the best clinical care of patients with and without chronic kidney disease. The new creatinine-based European Kidney Function Consortium (EKFC) equation is used to estimate GFR. This equation was developed and validated mainly in European individuals and based on a rescaled creatinine, with the rescaling factor (Q-value) defined as the median normal value of serum creatinine in a given population. The validation was limited in Non-Black Americans and absent in Black Americans. Here, our cross-sectional analysis included 12,854 participants from nine studies encompassing large numbers of both non-Black and Black Americans with measured GFR by clearance of an exogenous marker (reference method), serum creatinine, age, sex, and self-reported race available. Two strategies were considered with population-specific Q-values in Black and non-Black men and women (EKFCPS) or a race-free Q-value (EKFCRF). In the whole population, only the EKFCPS equation showed no statistical median bias (0.14, 95% confidence interval [-0.07; 0.35] mL/min/1.73m2), and the bias for the EKFCRF (0.74, [0.51; 0.94] mL/min/1.73m2) was closer to zero than that for the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI2021) equation (1.22, [0.99; 1.47]) mL/min/1.73m2]. The percentage of estimated GFR within 30% of measured GFR was similar for CKD-EPI2021 (79.2% [78.5%; 79.9%]) and EKFCRF (80.1% [79.4%; 80.7%]), but improved for the EKFCPS equation (81.1% [80.5%; 81.8%]). Thus, our EKFC equations can be used to estimate GFR in the United States incorporating either self-reported race or unknown race at the patient's discretion per hospital registration records.


Assuntos
Cistatina C , Insuficiência Renal Crônica , Masculino , Humanos , Feminino , Estados Unidos , Creatinina , Estudos Transversais , Taxa de Filtração Glomerular , Rim
18.
Kidney Int ; 106(1): 136-144, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697479

RESUMO

People with human immunodeficiency virus (HIV) are at risk for chronic kidney disease (CKD) due to HIV and antiretroviral therapy (ART) nephrotoxicity. Immediate ART initiation reduces mortality and is now the standard of care, but the long-term impact of prolonged ART exposure on CKD is unknown. To evaluate this, the Strategic Timing of Antiretroviral Treatment (START) trial randomized 4,684 ART-naïve adults with CD4 cell count under 500 cells/mm3 to immediate versus deferred ART. We previously reported a small but statistically significantly greater decline in estimated glomerular filtration rate (eGFR) over a median of 2.1 years in participants randomized to deferred versus immediate ART. Here, we compare the incidence of CKD events and changes in eGFR and urine albumin/creatinine ratio (UACR) in participants randomized to immediate versus deferred ART during extended follow-up. Over a median of 9.3 years, eight participants experienced kidney failure or kidney-related death, three in the immediate and five in the deferred ART arms, respectively. Over a median of five years of more comprehensive follow-up, the annual rate of eGFR decline was 1.19 mL/min/1.73m2/year, with no significant difference between treatment arms (difference deferred - immediate arm 0.055; 95% confidence interval -0.106, 0.217 mL/min/1.73m2). Results were similar in models adjusted for baseline covariates associated with CKD, including UACR and APOL1 genotype. Similarly, there was no significant difference between treatment arms in incidence of confirmed UACR 30 mg/g or more (odds ratio 1.13; 95% confidence interval 0.85, 1.51). Thus, our findings provide the most definitive evidence to date in support of the long-term safety of early ART with respect to kidney health.


Assuntos
Taxa de Filtração Glomerular , Infecções por HIV , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/complicações , Taxa de Filtração Glomerular/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Fatores de Tempo , Incidência , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Rim/fisiopatologia , Rim/efeitos dos fármacos , Contagem de Linfócito CD4 , Albuminúria/epidemiologia , Tempo para o Tratamento , Creatinina/sangue , Creatinina/urina , Esquema de Medicação , Resultado do Tratamento , Fatores de Risco , Apolipoproteína L1/genética
19.
Kidney Int ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901604

RESUMO

Pharmacologic interventions to slow chronic kidney disease progression, such as ACE-inhibitors, angiotensin receptor blockers, or sodium glucose co-transporter 2 inhibitors, often produce acute treatment effects on glomerular filtration rate (GFR) that differ from their long-term chronic treatment effects. Observational studies assessing the implications of acute effects cannot distinguish acute effects from GFR changes unrelated to the treatment. Here, we performed meta-regression analysis of multiple trials to isolate acute effects to determine their long-term implications. In 64 randomized controlled trials (RCTs), enrolling 154,045 participants, we estimated acute effects as the mean between-group difference in GFR slope from baseline to three months, effects on chronic GFR slope (starting at three months after randomization), and effects on three composite kidney endpoints defined by kidney failure (GFR 15 ml/min/1.73m2 or less, chronic dialysis, or kidney transplantation) or sustained GFR declines of 30%, 40% or 57% decline, respectively. We used Bayesian meta-regression to relate acute effects with treatment effects on chronic slope and the composite kidney endpoints. Overall, acute effects were not associated with treatment effects on chronic slope. Acute effects were associated with the treatment effects on composite kidney outcomes such that larger negative acute effects were associated with lesser beneficial effects on the composite kidney endpoints. Associations were stronger when the kidney composite endpoints were defined by smaller thresholds of GFR decline (30% or 40%). Results were similar in a subgroup of interventions with supposedly hemodynamic effects that acutely reduce GFR. For studies with GFR 60 mL/min/1.73m2 or under, negative acute effects were associated with larger beneficial effects on chronic GFR slope. Thus, our data from a large and diverse set of RCTs suggests that acute effects of interventions may influence the treatment effect on clinical kidney outcomes.

20.
Kidney Int ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964736

RESUMO

The fluorescent compound relmapirazin has been rationally designed for use in point-of-care measurement of glomerular filtration rate (GFR), with attributes including negligible protein binding, negligible metabolites in vivo, negligible tubular secretion, and excellent chemical and photo stability. Twenty-four nonclinical assays were performed in accordance with FDA requirements yielding negligible toxicology concerns. Here, a clinical study was performed to validate relmapirazin as a GFR tracer in patients by comparison to iohexol. This was evaluated in 120 adults at three clinical sites with eGFR values ranging from normal to Stage 4 chronic kidney disease. Relmapirazin and iohexol were administered intravenously in consecutive boluses to each subject and serial blood samples obtained over the subsequent 12 hours. Plasma concentrations were measured and the corresponding plasma GFR for each agent was determined using a standard two-compartment pharmacokinetic assessment. Urine from each subject was collected for the entire 12-hour study period to measure the amount of administered dose appearing in the urine. A near perfect linear regression correlation was observed between the GFRs measured by these two tracers (r2=0.99). Bland-Altman analysis confirmed agreement between these two measures of GFR (limits of agreement -7.0 to +5.6 mL/min; mean of -0.7 mL/min). The GFR determined by relmapirazin was independent of GFR stratification by chronic kidney disease stage, and importantly by race. The percent of the administered relmapirazin dose recovered in the urine was greater than or equal to that of iohexol with no reported severe adverse events. Thus, relmapirazin may be used as a GFR tracer agent in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA