Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Glob Chang Biol ; 30(6): e17392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38934256

RESUMO

Canadian wildfires in 2023 were record breaking with wide-reaching impacts on people, nature, and climate. Extreme heat and low rainfall associated with climate change led to unprecedented forest fires that released enormous amounts of carbon as they burned. This study used data on fire-driven tree cover loss and forest carbon fluxes to estimate the total extent of stand-replacing forest fires and their associated carbon emissions. We found that the 2023 Canadian wildfires burned nearly 7.8 million hectares of forest and accounted for more than a quarter of all tree cover loss globally. Furthermore, forests impacted by wildfires emitted nearly 3 billion tons of CO2 or about 25% more carbon than all primary tropical tree cover loss that year. These results have important implications for global carbon budgets because emissions from these wildfires will largely be excluded from official greenhouse gas reporting.


Assuntos
Mudança Climática , Florestas , Árvores , Incêndios Florestais , Canadá , Dióxido de Carbono/análise , Carbono/análise , Ciclo do Carbono
2.
J Environ Manage ; 359: 120864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714029

RESUMO

Deforestation rates in the Amazon have markedly increased in the last few years, affecting non-protected and protected areas (PAs). Brazil is a hotspot of Protected Area Downgrading, Downsizing, and Degazettement (PADDD) events, with most events associated with infrastructure projects. Despite the threats dams impose on PAs, there is a knowledge gap in assessing deforestation in PAs around large dams in the Amazon. This study investigates how deforestation affects Biodiversity Protection Areas (BioPAs) and Indigenous Lands around the Jirau and Santo Antônio (JSA) dams (Madeira River, Rondônia) and Belo Monte dam (Xingu River, Pará) in the Brazilian Amazon. We compared clear-cutting between PAs and control areas and the annual rates of forest change between pre-dam and post-dam periods. We discussed deforestation-related factors (e.g., PADDD events and the presence of management plans or councils). Our results show an increase in deforestation after the operation of the dams when environmental control from licensing agencies decreases and other political and economic factors are in practice. Indigenous Lands experienced a significant increase in deforestation around the Belo Monte dam, which is associated with the demarcation process and land conflicts. Surrounding the JSA dams, sustainable use BioPAs showed high deforestation rates, and 27 PADDD events were reported, four directly related to dams. In addition to dams, deforestation was associated with the crisis of Brazilian democracy and the weakening of environmental policies. In conclusion, the weak environmental control from environmental licensing agencies during dam operation and PADDD events have contributed to increased deforestation rates and additional stresses in the Amazon.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Brasil , Rios , Florestas
3.
Conserv Biol ; : e14195, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811727

RESUMO

Indigenous Peoples' lands (IPL) cover at least 38 million km2 (28.1%) of Earth's terrestrial surface. These lands can be important for biodiversity conservation. Around 20.7% of IPL intersect areas protected by government (PAs). Many sites of importance for biodiversity within IPL could make a substantial but hitherto unquantified contribution to global site-based conservation targets. Key Biodiversity Areas (KBAs) represent the largest global network of systematically identified sites of high importance for biodiversity. We assessed the effectiveness of IPL in slowing biodiversity loss inside and outside PAs by quantifying tree cover loss from 2000 to 2019 in KBAs at international and national levels and comparing it with losses at equivalent sites outside mapped IPL. Based on a matched sample of 1-km2 cells in KBAs inside and outside mapped IPL, tree cover loss in KBAs outside PAs was lower inside IPL than outside IPL. By contrast, tree cover loss in KBAs inside PAs was lower outside IPL than inside IPL (although the difference was far smaller). National rates of tree cover loss in KBAs varied greatly in relation to their IPL and PA status. In one half of the 44 countries we examined individually, there was no significant difference in the rate of tree cover loss in KBAs inside and outside mapped IPL. The reasons for this intercountry variation could illuminate the importance of IPL in meeting the Convention on Biological Diversity's ambition of conserving 30% of land by 2030. Critical to this will be coordinated action by governments to strengthen and enforce Indigenous Peoples' rights, secure their collective systems of tenure and governance, and recognize their aspirations for their lands and futures.


Tasas de pérdida de la cobertura arbórea en áreas clave de biodiversidad en suelo indígena Resumen Las tierras de los pueblos indígenas (TPI) cubren al menos 38 millones de km2 (28.1%) de la superficie del planeta. Estas tierras pueden ser importantes para la conservación de la biodiversidad. Un 20.7% de las TPI se intersecan con áreas protegidas (AP) por el gobierno. Muchos sitos con importancia para la biodiversidad dentro de las TPI podrían contribuir de forma sustancial, pero todavía sin cuantificar, a los objetivos globales de conservación in situ. Las áreas clave para la biodiversidad (ACB) representan la mayor red mundial de sitios con identificación sistemática de gran valor para la biodiversidad. Evaluamos la efectividad de las TPI en la reducción de la pérdida de la biodiversidad dentro y fuera de las AP mediante la cuantificación de la pérdida de la cobertura arbórea entre el 2000 y 2019 en las ACB a niveles nacional e internacional. También comparamos esta efectividad con las pérdidas en sitios equivalentes fuera de las TPI mapeadas. Con base en una muestra emparejada de celdas de 1-km2 en ACB dentro y fuera de las TPI mapeadas, la pérdida de la cobertura arbórea en las ACB ubicadas fuera de las AP fue menor dentro de las TPI que fuera de ellas. Al contrario, la pérdida en las ACB ubicadas dentro de las AP fue menor afuera de las TPI que adentro de ellas (aunque la diferencia fue por mucho menor). Las tasas nacionales de pérdida de la cobertura arbórea en las ACB variaron sobremanera en relación con su estado en las TPI y en las AP. En la mitad de los 44 países que analizamos individualmente no hubo una diferencia significativa en la tasa de pérdida de la cobertura arbórea en las ACB dentro y fuera de las TPI mapeadas. Las razones detrás de esta variación entre los países podrían aclarar la importancia que tienen las TPI para cumplir con la meta del Convenio sobre Diversidad Biológica de conservar el 30% del suelo para el 2030. La acción coordenada de los gobiernos será crítica para fortalecer y hacer cumplir los derechos de los pueblos indígenas, asegurar su sistema colectivo de tenencia y gobierno, y reconocer sus objetivos para sus tierras y el futuro.

4.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904853

RESUMO

Forest loss, unbridled urbanisation, and the loss of arable lands have become contentious issues for the sustainable management of land. Landsat satellite images for 1986, 2003, 2013, and 2022, covering the Kumasi Metropolitan Assembly and its adjoining municipalities, were used to analyse the Land Use Land Cover (LULC) changes. The machine learning algorithm, Support Vector Machine (SVM), was used for the satellite image classification that led to the generation of the LULC maps. The Normalised Difference Vegetation Index (NDVI) and Normalised Difference Built-up Index (NDBI) were analysed to assess the correlations between the indices. The image overlays of the forest and urban extents and the calculation of the annual deforestation rates were evaluated. The study revealed decreasing trends in forestlands, increased urban/built-up areas (similar to the image overlays), and a decline in agricultural lands. However, there was a negative relationship between the NDVI and NDBI. The results corroborate the pressing need for the assessment of LULC utilising satellite sensors. This paper contributes to the existing outlines for evolving land design for the promotion of sustainable land use.

5.
Environ Monit Assess ; 195(8): 947, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439956

RESUMO

Loss of forest cover has an important impact on global climate change. This study investigated variation in forest cover in Luang Prabang district, the capital of Luang Prabang province, Lao PDR, using Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) satellite imagery over the period 1988-2021. The maximum likelihood classification technique was used to classify Landsat images of the years 1988, 2001, 2011, and 2021 and was evaluated for accuracy using the kappa coefficient for each year (0.860, 0.869, 0.878, and 0.950, respectively). The potential of classification based on the Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) to detect changes in natural forest and cultivated forest cover compared with supervised classification was also evaluated. The natural forest cover of the study area was estimated at 84.09% (687.82 km2) of the total land area in 1988. This number decreased to 56.93% (465.69 km2) in 2001 and subsequently increased to 60.85% (497.77 km2) in 2011 and 66.49% (543.92 km2) in 2021. Cultivated forest cover in 1988 was 4.96% (40.58 km2) and increased to 16.84% (137.76 km2) in 2001, however it decreased to 13.57% (110.97 km2) in 2011 and 9.67% (79.10 km2) in 2021. Severely reduced forest cover is often associated with the expansion of agriculture on the forest edge. Logging and charcoal production are other problems that contribute to the reduction of forest cover. Overall, our results show the necessity of forest management, rational land-use planning policy, and increased community awareness of conservation and sustainable development of forest resources in the study area in the future.


Assuntos
Monitoramento Ambiental , Imagens de Satélites , Laos , Monitoramento Ambiental/métodos , Florestas , Agricultura , Conservação dos Recursos Naturais/métodos
6.
Glob Chang Biol ; 28(12): 3883-3901, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35274416

RESUMO

Tropical forests in India have declined at an alarming rate over the past century, with extensive literature focusing on the high contributions of agricultural expansions to deforestation, while the effects of climate change have largely been overlooked. Climate change effects, such as increasing temperatures, drought and flooding, have already occurred, and are projected to worsen. Climate velocity, a metric that accounts for spatial heterogeneity in climate, can help identify contiguous areas under greater climate stress and potential climate refuges in addition to traditional temporal trends. Here, we examined the relative contribution of climate changes to forest loss in India during the period 2001-2018, at two spatial (regional and national) and two temporal (seasonal and annual) scales. This includes, for the first time, a characterization of climate velocity in the country. Our findings show that annual forest loss increased substantially over the 17-year period examined (2001-2018), with the majority of forest loss occurring in the Northeast region. Decreases in temporal trends of temperature and precipitation were most associated with forest losses, but there was large spatial and seasonal variation in the relationship. In every region except the Northeast, forest losses were correlated with faster velocities of at least one climate variable but overlapping areas of high velocities were rare. Our findings indicate that climate changes have played an important role in India's past forest loss, but likely remain secondary to other factors at present. We stress concern for climates velocities recorded in the country, reaching 97 km year-1 , and highlight that understanding the different regional and seasonal relationships between climatic conditions and forest distributions will be key to effective protection of the country's remaining forests as climate change accelerates.


Assuntos
Mudança Climática , Florestas , Secas , Estações do Ano , Temperatura
7.
Glob Chang Biol ; 28(23): 6944-6960, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35582991

RESUMO

Narratives of landscape degradation are often linked to unsustainable fire use by local communities. Madagascar is a case in point: the island is considered globally exceptional, with its remarkable endemic biodiversity viewed as threatened by unsustainable anthropogenic fire. Yet, fire regimes on Madagascar have not been empirically characterised or globally contextualised. Here, we contribute a comparative approach to determining relationships between regional fire regimes and global patterns and trends, applied to Madagascar using MODIS remote sensing data (2003-2019). Rather than a global exception, we show that Madagascar's fire regimes are similar to 88% of tropical burned area with shared climate and vegetation characteristics, and can be considered a microcosm of most tropical fire regimes. From 2003-2019, landscape-scale fire declined across tropical grassy biomes (17%-44% excluding Madagascar), and on Madagascar at a relatively fast rate (36%-46%). Thus, high tree loss anomalies on the island (1.25-4.77× the tropical average) were not explained by any general expansion of landscape-scale fire in grassy biomes. Rather, tree loss anomalies centred in forests, and could not be explained by landscape-scale fire escaping from savannas into forests. Unexpectedly, the highest tree loss anomalies on Madagascar (4.77×) occurred in environments without landscape-scale fire, where the role of small-scale fires (<21 h [0.21 km2 ]) is unknown. While landscape-scale fire declined across tropical grassy biomes, trends in tropical forests reflected important differences among regions, indicating a need to better understand regional variation in the anthropogenic drivers of forest loss and fire risk. Our new understanding of Madagascar's fire regimes offers two lessons with global implications: first, landscape-scale fire is declining across tropical grassy biomes and does not explain high tree loss anomalies on Madagascar. Second, landscape-scale fire is not uniformly associated with tropical forest loss, indicating a need for socio-ecological context in framing new narratives of fire and ecosystem degradation.


Assuntos
Ecossistema , Incêndios , Madagáscar , Florestas , Árvores , Poaceae
8.
Conserv Biol ; 36(6): e13970, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35713105

RESUMO

Reducing emissions from deforestation and forest degradation (REDD+) projects aim to contribute to climate change mitigation by protecting and enhancing carbon stocks in tropical forests, but there have been no systematic global evaluations of their impact. We used a new data set for tropical humid forests and a standardized evaluation approach (based on pixel matching) to quantify the performance of a representative sample of 40 voluntary REDD+ projects in 9 countries certified under the Verified Carbon Standard (VCS). In the first 5 years of implementation, deforestation within project areas was reduced by 47% (95% confidence interval [CI]: 24-68) compared with matched counterfactual pixels, and degradation rates were 58% lower (95% CI: 49-63). Reductions were small in absolute terms but greater in sites located in high-deforestation settings and did not appear to be substantially undermined by leakage activities in forested areas within 10 km of project boundaries. At the 26th Conference of the Parties of the United Nations Framework Convention on Climate Change, the international community renewed its commitment to tackling tropical deforestation as a nature-based solution to climate change. Our results indicate that incentivizing forest conservation through voluntary site-based projects can slow tropical deforestation and highlight the particular importance of prioritizing financing for areas at greater risk of deforestation.


Evaluación Global de la Efectividad de proyectos REDD+ en la Reducción de la Deforestación y Degradación en el Trópico Húmedo Resumen Los proyectos para la reducción de emisiones derivados de la deforestación y degradación de bosques (REDD+) tienen como meta contribuir a la mitigación del cambio climático al protejer y  fomentar la disponibilidad de carbono en bosques tropicales, pero a la fecha no se han realizado evaluaciones globales sistemáticas sobre su impacto. Utilizamos bases de datos recientes sobre bosques tropicales húmedos y un método estandarizado de evaluación (basado en 'emparejamiento' [matching] de pixeles) para cuantificar el desempeño de una muestra representativa de 40 proyectos voluntarios REDD+ , localizados en 9 países y certificados bajo el estándar Verified Carbon Standard (VCS). En los primeros 5 años de implementación, la deforestación en las áreas de los proyectos disminuyó en 47% (IC 95% 24-68) en comparación con los pixeles contrafactuales correspondientes, y las tasas de degradación fueron 58% menos (IC 95% 49-63). Las reducciones fueron pequeñas en términos absolutos pero mayores en sitios con tasas de deforestación elevadas, y no parecieron ser afectadas sustancialmente por efectos de fuga (leakage) en áreas boscosas en un radio de 10 km de los límites del proyecto. En la COP26, la comunidad internacional renovó su compromiso de afrontar la deforestación tropical como una solución al cambio climático basada en la naturaleza. Nuestros resultados indican que incentivar la conservación de bosques mediante proyectos locales voluntarios puede disminuir la deforestación tropical, y resaltan la importancia de priorizar financiamiento en áreas con un mayor riesgo de deforestación.


Assuntos
Conservação dos Recursos Naturais , Florestas , Mudança Climática , Carbono
9.
Glob Chang Biol ; 27(15): 3642-3656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33896078

RESUMO

Changing wildfire regimes are causing rapid shifts in forests worldwide. In particular, forested landscapes that burn repeatedly in relatively quick succession may be at risk of conversion when pre-fire vegetation cannot recover between fires. Fire refugia (areas that burn less frequently or severely than the surrounding landscape) support post-fire ecosystem recovery and the persistence of vulnerable species in fire-prone landscapes. Observed and projected fire-induced forest losses highlight the need to understand where and why forests persist in refugia through multiple fires. This research need is particularly acute in the Klamath-Siskiyou ecoregion of southwest Oregon and northwest California, USA, where expected increases in fire activity and climate warming may result in the loss of up to one-third of the region's conifer forests, which are the most diverse in western North America. Here, we leverage recent advances in fire progression mapping and weather interpolation, in conjunction with a novel application of satellite smoke imagery, to model the key controls on fire refugia occurrence and persistence through one, two, and three fire events over a 32-year period. Hotter-than-average fire weather was associated with lower refugia probability and higher fire severity. Refugia that persisted through three fire events appeared to be partially entrained by landscape features that offered protection from fire, suggesting that topographic variability may be an important stabilizing factor as forests pass through successive fire filters. In addition, smoke density strongly influenced fire effects, with fire refugia more likely to occur when smoke was moderate or dense in the morning, a relationship attributable to reduced incoming solar radiation resulting from smoke shading. Results from this study could inform management strategies designed to protect fire-resistant portions of biologically and topographically diverse landscapes.


Assuntos
Refúgio de Vida Selvagem , Traqueófitas , Ecossistema , Florestas , América do Norte , Oregon
10.
Glob Chang Biol ; 27(11): 2377-2391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33694227

RESUMO

Fires, among other forms of natural and anthropogenic disturbance, play a central role in regulating the location, composition and biomass of forests. Understanding the role of fire in global forest loss is crucial in constraining land-use change emissions and the global carbon cycle. We analysed the relationship between forest loss and fire at 500 m resolution based on satellite-derived data for the 2003-2018 period. Satellite fire data included burned area and active fire detections, to best account for large and small fires, respectively. We found that, on average, 38 ± 9% (± range) of global forest loss was associated with fire, and this fraction remained relatively stable throughout the study period. However, the fraction of fire-related forest loss varied substantially on a regional basis, and showed statistically significant trends in key tropical forest areas. Decreases in the fraction of fire-related forest loss were found where deforestation peaked early in our study period, including the Amazon and Indonesia while increases were found for tropical forests in Africa. The inclusion of active fire detections accounted for 41%, on average, of the total fire-related forest loss, with larger contributions in small clearings in interior tropical forests and human-dominated landscapes. Comparison to higher-resolution fire data with resolutions of 375 and 20 m indicated that commission errors due to coarse resolution fire data largely balanced out omission errors due to missed small fire detections for regional to continental-scale estimates of fire-related forest loss. Besides an improved understanding of forest dynamics, these findings may help to refine and separate fire-related and non-fire-related land-use change emissions in forested ecosystems.


Assuntos
Ecossistema , Incêndios , África , Florestas , Humanos , Indonésia , Árvores
11.
Conserv Biol ; 35(1): 206-215, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32410311

RESUMO

Despite containing extraordinary levels of biodiversity, lowland (<200 m asl) tropical forests are extremely threatened globally. Southeast Asia is an area of high species richness and endemicity under considerable anthropogenic threat with, unfortunately, scant focus on its lowland forests. We estimated extent of lowland forest loss from 1998 to 2018, including inside protected areas and determined the vulnerability of this remaining forest. Maximum likelihood classification techniques were used to classify Landsat images to estimate lowland forest cover in 1998 and 2018. We used Bayesian belief networks with 20 variables to evaluate vulnerability of the forest that remained in 2018. Analyses were conducted at two spatial scales: landscape patch (analogous to ecoregion) and country level. Over 20 years, >120,000 km2 of forest (50% of forest present in 1998) was lost. Of the 14 lowland forest patches, 6 lost >50% of their area. At the country scale, Cambodia had the greatest deforestation (>47,500 km2 ). In 2018, 18% of the lowlands were forested, and 20% of these forests had some formal protection. Approximately 50% of the lowland forest inside protected areas (c. 11,000 km2 ) was also lost during the study period. Most lowland forest remaining is highly vulnerable; eight landscape patches had >50% categorized as such. Our results add to a growing body of evidence that the presence of protected areas alone will not prevent further deforestation. We suggest that more collaborative conservation strategies with local communities that accommodate conservation concessions specifically for lowland forests are urgently needed to prevent further destruction of these valuable habitats.


Pérdida y Vulnerabilidad de los Bosques de Tierras Bajas en la Parte Continental del Sudeste Asiático Resumen A pesar de que contienen niveles extraordinarios de biodiversidad, los bosques tropicales de tierras bajas (<200 m snm) se encuentran bajo amenazas extremas en todo el mundo. El sudeste de Asia es un área con una riqueza alta de especies y endemismos bajo amenazas antropogénicas considerables, desafortunadamente, con un enfoque exiguo sobre sus bosques de tierras bajas. Estimamos la extensión de la pérdida de bosques de tierras bajas desde 1998 hasta 2018, incluyendo aquellos bosques que se encuentran dentro de áreas protegidas, y determinamos la vulnerabilidad del bosque que permanece. Usamos técnicas de clasificación de la probabilidad máxima para clasificar imágenes Landsat y así estimar la cobertura de bosque de tierras bajas en 1998 y 2018. Usamos redes de opinión bayesiana con 20 variables para evaluar la vulnerabilidad del bosque que permanecía en pie en 2018. Los análisis fueron realizados a dos escalas espaciales: a nivel de fragmento de paisaje (análogo a la ecorregión) y a nivel de país. A lo largo de 20 años, se perdieron >120,000 km2 de bosque (50% del bosque presente en 1998). De los 14 fragmentos de bosque de tierras bajas, seis perdieron >50% de su área. A la escala de país, Camboya tuvo la mayor deforestación (>47,500 km2 ). En 2018, el 18% de las tierras bajas contaban con bosque y el 20% de estos bosques tenían algún tipo de protección formal. Aproximadamente el 50% del bosque de tierras bajas que se encuentra dentro de áreas protegidas (aprox. 11,000 km2 ) también se perdió durante el periodo de estudio. La mayoría del bosque de tierras bajas que todavía permanece tiene una vulnerabilidad muy alta; ocho de los fragmentos de paisaje tenían >50% categorizado de tal manera. Nuestros resultados se suman a un cuerpo creciente de evidencia de que la sola presencia de las áreas protegidas no va a prevenir una mayor deforestación. Sugerimos que se necesitan urgentemente más estrategias de conservación colaborativa con comunidades locales que acomoden las concesiones de conservación específicamente para los bosques de tierras bajas para prevenir una mayor destrucción de estos hábitats tan valiosos.


Assuntos
Conservação dos Recursos Naturais , Florestas , Sudeste Asiático , Teorema de Bayes , Biodiversidade
12.
Ecol Lett ; 23(4): 674-681, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043741

RESUMO

Decades of research suggest that species richness depends on spatial characteristics of habitat patches, especially their size and isolation. In contrast, the habitat amount hypothesis predicts that (1) species richness in plots of fixed size (species density) is more strongly and positively related to the amount of habitat around the plot than to patch size or isolation; (2) habitat amount better predicts species density than patch size and isolation combined, (3) there is no effect of habitat fragmentation per se on species density and (4) patch size and isolation effects do not become stronger with declining habitat amount. Data on eight taxonomic groups from 35 studies around the world support these predictions. Conserving species density requires minimising habitat loss, irrespective of the configuration of the patches in which that habitat is contained.


Assuntos
Ecossistema
13.
Glob Chang Biol ; 26(10): 5874-5885, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32662146

RESUMO

Frequent Amazonian fires over the last decade have raised the alarm about the fate of the Earth's most biodiverse forest. The increased fire frequency has been attributed to altered hydrological cycles. However, observations over the past few decades have demonstrated hydrological changes that may have opposing impacts on fire, including higher basin-wide precipitation and increased drought frequency and severity. Here, we use multiple satellite observations and climate reanalysis datasets to demonstrate compelling evidence of increased fire susceptibility in response to climate regime shifts across Amazonia. We show that accumulated forest loss since 2000 warmed and dried the lower atmosphere, which reduced moisture recycling and resulted in increased drought extent and severity, and subsequent fire. Extremely dry and wet events accompanied with hot days have been more frequent in Amazonia due to climate shift and forest loss. Simultaneously, intensified water vapor transport from the tropical Pacific and Atlantic increased high-altitude atmospheric humidity and heavy rainfall events, but those events did not alleviate severe and long-lasting droughts. Amazonia fire risk is most significant in the southeastern region where tropical savannas undergo long seasonally dry periods. We also find that fires have been expanding through the wet-dry transition season and northward to savanna-forest transition and tropical seasonal forest regions in response to increased forest loss at the "Arc of Deforestation." Tropical forests, which have adapted to historically moist conditions, are less resilient and easily tip into an alternative state. Our results imply forest conservation and fire protection options to reduce the stress from positive feedback between forest loss, climate change, and fire.


Assuntos
Florestas , Árvores , Brasil , Mudança Climática , Secas , Clima Tropical
14.
Conserv Biol ; 34(6): 1452-1462, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32343014

RESUMO

Estimating the effectiveness of protected areas (PAs) in reducing deforestation is useful to support decisions on whether to invest in better management of areas already protected or to create new ones. Statistical matching is commonly used to assess this effectiveness, but spatial autocorrelation and regional differences in protection effectiveness are frequently overlooked. Using Colombia as a case study, we employed statistical matching to account for confounding factors in park location and accounted for for spatial autocorrelation to determine statistical significance. We compared the performance of different matching procedures-ways of generating matching pairs at different scales-in estimating PA effectiveness. Differences in matching procedures affected covariate similarity between matched pairs (balance) and estimates of PA effectiveness in reducing deforestation. Independent matching yielded the greatest balance. On average 95% of variables in each region were balanced with independent matching, whereas 33% of variables were balanced when using the method that performed worst. The best estimates suggested that average deforestation inside protected areas in Colombia was 40% lower than in matched sites. Protection significantly reduced deforestation, but PA effectiveness differed among regions. Protected areas in Caribe were the most effective, whereas those in Orinoco and Pacific were least effective. Our results demonstrate that accounting for spatial autocorrelation and using independent matching for each subset of data is needed to infer the effectiveness of protection in reducing deforestation. Not accounting for spatial autocorrelation can distort the assessment of protection effectiveness, increasing type I and II errors and inflating effect size. Our method allowed improved estimates of protection effectiveness across scales and under different conditions and can be applied to other regions to effectively assess PA performance.


Efectos de la Autocorrelación Espacial y el Diseño del Muestreo sobre las Estimaciones de la Efectividad de Áreas Protegidas Resumen La estimación de la efectividad de las áreas protegidas (AP) para reducir la deforestación es útil al momento de respaldar las decisiones que eligen entre invertir en un mejor manejo de las áreas ya protegidas o crear áreas nuevas. El emparejamiento estadístico es la herramienta utilizada con mayor frecuencia para evaluar esta efectividad, pero casi siempre se ignora la autocorrelación especial y las diferencias regionales en la efectividad de la protección. Con Colombia como caso de estudio, empleamos un emparejamiento estadístico para controlar el efecto de factores relacionados con la ubicación la ubicación de los parques y he incluimos el efecto de la autocorrelación especial para determinar la significancia estadística. Comparamos el desempeño de los diferentes procedimientos de emparejamiento - las maneras de generar pares a diferentes escalas - en la estimación de la efectividad de las AP. Las diferencias en los procedimientos de emparejamiento afectaron la similitud de la covarianza entre los pares emparejados (balance) y la estimación de la efectividad de las AP en la reducción de la deforestación. El emparejamiento independiente produjo el mayor balance. En promedio, el 95% de las variables en cada región estuvo balanceado con el emparejamiento independiente, mientras que el 24% de las variables estuvo balanceado cuando se usó el método con el peor desempeño. Las mejores estimaciones sugieren que la deforestación media dentro de las áreas protegidas en Colombia era 40% menor que en los sitios emparejados emparejados. La protección redujo significativamente la deforestación, aunque la efectividad de las AP difirió entre las regiones. Las AP en la región Caribe fueron las más efectivas, mientras que aquellas en la Orinoquía y el Pacífico fueron las menos efectivas. Nuestros resultados demuestran que se necesita considerar la autocorrelación espacial y usar el emparejamiento independiente para cada subconjunto de datos para inferir la efectividad de la protección en la reducción de la deforestación. Si no se considera la autocorrelación espacial, se pueden distorsionar los estimativos de la efectividad de la protección, incrementando los errores de tipo I y II e inflando el tamaño del efecto. Nuestro método permitió obtener mejores estimaciones de la efectividad de la protección en todas las escalas y bajo diferentes condiciones y puede aplicarse a otras regiones para evaluar de manera efectiva el desempeño de las AP.


Assuntos
Conservação dos Recursos Naturais , Florestas , Colômbia , Análise Espacial
15.
Glob Chang Biol ; 25(6): 2112-2126, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30854741

RESUMO

The interactions between climate and land-use change are dictating the distribution of flora and fauna and reshuffling biotic community composition around the world. Tropical mountains are particularly sensitive because they often have a high human population density, a long history of agriculture, range-restricted species, and high-beta diversity due to a steep elevation gradient. Here we evaluated the change in distribution of woody vegetation in the tropical Andes of South America for the period 2001-2014. For the analyses we created annual land-cover/land-use maps using MODIS satellite data at 250 m pixel resolution, calculated the cover of woody vegetation (trees and shrubs) in 9,274 hexagons of 115.47 km2 , and then determined if there was a statistically significant (p < 0.05) 14 year linear trend (positive-forest gain, negative-forest loss) within each hexagon. Of the 1,308 hexagons with significant trends, 36.6% (n = 479) lost forests and 63.4% (n = 829) gained forests. We estimated an overall net gain of ~500,000 ha in woody vegetation. Forest loss dominated the 1,000-1,499 m elevation zone and forest gain dominated above 1,500 m. The most important transitions were forest loss at lower elevations for pastures and croplands, forest gain in abandoned pastures and cropland in mid-elevation areas, and shrub encroachment into highland grasslands. Expert validation confirmed the observed trends, but some areas of apparent forest gain were associated with new shade coffee, pine, or eucalypt plantations. In addition, after controlling for elevation and country, forest gain was associated with a decline in the rural population. Although we document an overall gain in forest cover, the recent reversal of forest gains in Colombia demonstrates that these coupled natural-human systems are highly dynamic and there is an urgent need of a regional real-time land-use, biodiversity, and ecosystem services monitoring network.


Assuntos
Florestas , Árvores , Biodiversidade , Colômbia , Ecossistema , Imagens de Satélites , América do Sul , Clima Tropical
16.
Proc Natl Acad Sci U S A ; 113(2): 344-9, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26712025

RESUMO

The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Aquicultura , Sudeste Asiático , Geografia , Fatores de Tempo
17.
Glob Chang Biol ; 24(10): 4682-4695, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29963723

RESUMO

Farmers are carving a new agricultural frontier from the forests in the Southeast Asian Massif (SAM) in the 21st century, triggering significant environment degradation at the local scale; however, this frontier has been missed by existing global land use and forest loss analyses. In this paper, we chose Thailand's Nan Province, which is located in the geometric center of SAM, as a case study, and combined high resolution forest cover change product with a fine-scale land cover map to investigate land use dynamics with respect to topography in this region. Our results show that total forest loss in Nan Province during 2001-2016 was 66,072 ha (9.1% of the forest cover in 2000), and that the majority of this lost forest (92%) had been converted into crop (mainly corn) fields by 2017. Annual forest loss is significantly correlated with global corn price (p < 0.01), re-confirming agricultural expansion as a key driver of forest loss in Nan Province. Along with the increasing global corn price, forest loss in Nan Province has accelerated at a rate of 2,616 ± 730 ha per decade (p < 0.01). Global corn price peaked in 2012, in which year annual forest loss also reached its peak (7,523 ha); since then, the location of forest loss has moved to steeper land at higher elevations. Spatially, forest loss driven by this smallholder agricultural expansion emerges as many small patches that are not recognizable even at a moderate spatial resolution (e.g. 300 m). It explains how existing global land use/cover change products have missed the widespread and rapid forest loss in SAM. It also highlights the importance of high-resolution observations to evaluate the environmental impacts of agricultural expansion and forest loss in SAM, including, but not limited to, the impacts on the global carbon cycle, regional hydrology, and local environmental degradation.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Florestas , Conservação dos Recursos Naturais/métodos , Tailândia
18.
Ecol Appl ; 28(8): 1982-1997, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29791763

RESUMO

Forest fragmentation can lead to habitat reduction, edge increase, and exposure to disturbances. A key emerging policy to protect forests is payments for ecosystem services (PES), which offers compensation to landowners for environmental stewardship. Mexico was one of the first countries to implement a broad-scale PES program, enrolling over 2.3 Mha by 2010. However, Mexico's PES did not completely eliminate deforestation in enrolled parcels and could have increased incentives to hide deforestation in ways that increased fragmentation. We studied whether Mexican forests enrolled in the PES program had less forest fragmentation than those not enrolled, and whether the PES effects varied among forest types, among socioeconomic zones, or compared to the protected areas system. We analyzed forest cover maps from 2000 to 2012 to calculate forest fragmentation. We summarized fragmentation for different forest types and in four socioeconomic zones. We then used matching analysis to investigate the possible causal impacts of the PES on forests across Mexico and compared the effects of the PES program with that of protected areas. We found that the area covered by forest in Mexico decreased by 3.4% from 2000 to 2012, but there was 9.3% less forest core area. Change in forest cover was highest in the southern part of Mexico, and high-stature evergreen tropical forest lost the most core areas (-17%), while oak forest lost the least (-2%). Our matching analysis found that the PES program reduced both forest cover loss and forest fragmentation. Low-PES areas increased twice as much of the number of forest patches, forest edge, forest islets, and largest area of forest lost compared to high-PES areas. Compared to the protected areas system in Mexico, high-PES areas performed similarly in preventing fragmentation, but not as well as biosphere reserve core zones. We conclude that the PES was successful in slowing forest fragmentation at the regional and country level. However, the program could be improved by targeting areas where forest changes are more frequent, especially in southern Mexico. Fragmentation analyses should be implemented in other areas to monitor the outcomes of protection programs such as REDD+ and PES.


Assuntos
Conservação dos Recursos Naturais/economia , Agricultura Florestal/economia , Florestas , Biodiversidade , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , México
19.
Ecol Appl ; 27(4): 1294-1304, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28208227

RESUMO

Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios , Agricultura Florestal/métodos , Florestas , Tecnologia de Sensoriamento Remoto , Ciclo do Carbono , Colômbia , Mapeamento Geográfico , Modelos Teóricos
20.
Conserv Biol ; 31(3): 559-569, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27696505

RESUMO

The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries.


Assuntos
Conservação dos Recursos Naturais , Florestas , África , Biodiversidade , Geografia , Humanos , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA