Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.044
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2210561119, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584294

RESUMO

Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.


Assuntos
Dióxido de Carbono , Phaeophyceae , Dióxido de Carbono/metabolismo , Polissacarídeos/metabolismo , Phaeophyceae/metabolismo , Oceanos e Mares
2.
Nano Lett ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787330

RESUMO

While oral probiotics show promise in treating inflammatory bowel disease, the primary challenge lies in sustaining their activity and retention within the inflamed gastrointestinal environment. In this work, we develop an engineered probiotic platform that is armed with biocatalytic and inflamed colon-targeting nanocoatings for multipronged management of IBD. Notably, we achieve the in situ growth of artificial nanocatalysts on probiotics through a bioinspired mineralization strategy. The resulting ferrihydrite nanostructures anchored on bacteria exhibit robust catalase-like activity across a broad pH range, effectively scavenging ROS to alleviate inflammation. The further envelopment with fucoidan-based shields confers probiotics with additional inflamed colon-targeting functions. Upon oral administration, the engineered probiotics display markedly improved viability and colonization within the inflamed intestine, and they further elicit boosted prophylactic and therapeutic efficacy against colitis through the synergistic interplay of nanocatalysis-based immunomodulation and probiotics-mediated microbiota reshaping. The robust and multifunctional probiotic platforms offer great potential for the comprehensive management of gastrointestinal disorders.

3.
Biochem Biophys Res Commun ; 695: 149439, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160531

RESUMO

Celiac disease and other types of gluten intolerance significantly affect the life quality of patients making them restrict the diet removing all food produced from wheat, rye, oat, and barley flour, and some other products. These disorders arise from protease resistance of poorly soluble proteins prolamins, contained in gluten. Enhanced proteolytic digestion of gliadins might be considered as a prospective approach for the treatment of celiac disease and other types of gluten intolerance. Herein, we tested a range of sulfated polymers (kappa-carrageenan, dextran sulfate and different polysaccharides from brown seaweeds, and a synthetic polystyrene sulfonate) for the ability to activate gliadin digestion by human digestive proteases, pepsin and trypsin. Sulfated polysaccharide from Fucus evanescens enhanced proteolytic digestion of gliadins from wheat flour and reduced its cytotoxicity on intestinal epithelial Caco-2 cell culture. Regarding the non-toxic nature of fucoidans, the results provide a basis for polymer-based drugs or additives for the symptomatic treatment of gluten intolerance.


Assuntos
Doença Celíaca , Gliadina , Humanos , Gliadina/toxicidade , Gliadina/metabolismo , Células CACO-2 , Farinha , Sulfatos , Triticum , Glutens/metabolismo , Peptídeo Hidrolases , Polissacarídeos/farmacologia , Digestão
4.
J Transl Med ; 22(1): 155, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360728

RESUMO

BACKGROUND: Hypertension influences the inflammatory pathological changes in the retina. The function of the inflammasomes is significant. To see if Sirtuin 1 (SIRT1) regulates angiotensin II (Ang II)-induced hypertensive retinopathy and inflammation by modulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation and the potential protective effects of fucoidan (FO) in mouse retinal vascular endothelial cells (mRECs) and mice retina. METHODS: The diagnosis of hypertensive retinopathy was made after three weeks of Ang II infusion (3000 ng/kg/min). One day prior to the commencement of Ang II infusion, the mice were treatment with NLRP3 inhibitor MCC950 (10 mg/kg/day, intraperitoneal injections) or FO (300 mg/kg/day, oral gavage). A blood pressure was recorded. Hematoxylin and eosin (H&E) staining was used to conduct pathological alterations, dihydroethidium bromide (DHE) was utilized to assess oxidative stress damage in the retina, and fluorescence angiography was used to identify vascular disorders in the eye. Using immunohistochemical labeling, NLRP3 expression was found. Reactive protein and mRNA expression levels in mouse retina and cells were assessed using Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: NLRP3 inflammasome activation and SIRT1 decrease were brought about by Ang II infusion. Retinopathy and dysfunction were lessened by MCC950 target-induced NLRP3 inflammasome activation, while overexpression of SIRT1 had the opposite impact on NLRP3 inflammasome activation, indicating that SIRT1 functions as an upstream regulator of NLRP3 activity. FO may improve SIRT1 expression and decrease NLRP3 activation in retinopathy and dysfunction brought on by Ang II, and the effects were consistent across both in vivo and in vitro models. CONCLUSIONS: SIRT1 adversely regulates the NLRP3 inflammasome pathway, which in turn increases Ang II-induced inflammation and hypertensive retinopathy. FO may mitigate Ang II-induced retinopathy and dysfunction via modulating the expression of SIRT1/NLRP3. This implies practical approaches to the management of hypertensive retinopathy.


Assuntos
Retinopatia Hipertensiva , Proteína 3 que Contém Domínio de Pirina da Família NLR , Polissacarídeos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Sirtuína 1/metabolismo , Células Endoteliais/metabolismo , Inflamação , Angiotensina II
5.
Appl Environ Microbiol ; 90(2): e0202523, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259074

RESUMO

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Assuntos
Algas Comestíveis , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humanos , Metagenoma , Kelp/metabolismo , Polissacarídeos/metabolismo , Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Carbono/metabolismo
6.
Exp Dermatol ; 33(3): e15027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38514926

RESUMO

Hemangioma is a common benign tumour that usually occurs on the skin of the head and neck, particularly among infants. The current clinical treatment against hemangioma is surgery excision, however, application of drug is a safer and more economical therapy for children suffering from hemangioma. As a natural sulfated polysaccharide rich in brown algae, fucoidan is widely recognized for anti-tumour bioactivity and dosage safety in humans. This study aims to demonstrate the anti-tumour effect and underlying mechanism of fucoidan against hemangioma in vivo and in vitro. We investigated the effects of fucoidan by culturing hemangioma cells in vitro and treating BALB/c mice bearing with hemangioma. At first, we measured the cell proliferation and migration ability through in vitro experiments. Then, we tested the expression of epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin pathway-related biomarkers by western blot and qPCR. Furthermore, we applied ß-catenin-specific inhibitor, XAV939, to determine whether fucoidan suppressed EMT via the Wnt/ß-catenin pathway in hemangioma cells. In vivo experiments, we applied oral gavage of fucoidan to treat EOMA-bearing mice, along with evaluating the safety and efficacy of fucoidan. We found that fucoidan remarkably inhibits the proliferation and EMT ability of hemangioma cells, which is dependent on the Wnt/ß-catenin pathway. These results suggest that fucoidan exhibits tumour inhibitory effect on aggressive hemangioma via regulating the Wnt/ß-catenin signalling pathway both in vitro and in vivo, providing a new potent drug candidate for treating hemangioma.


Assuntos
Hemangioma , Polissacarídeos , Via de Sinalização Wnt , beta Catenina , Animais , Criança , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hemangioma/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos
7.
Fish Shellfish Immunol ; 147: 109458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369069

RESUMO

Fucoidan, a water-soluble heteropolysaccharide predominantly found in brown algae, comprises active components such as fucose and sulfate groups. This polysaccharide exhibits a range of physiological activities, including antioxidant, antiviral, anticancer, and immunomodulatory activities. In light of the global prohibition of antibiotics in animal feed, there is increasing interest in identifying safe, natural antibiotic alternatives that lack toxic side effects. This study focuses on analysing the impact of fucoidan in animal husbandry and provides a comprehensive review of the methods for preparing fucoidan, along with its physical and chemical characteristics. Its applications in the breeding of aquatic species, livestock, and poultry have also been summarized. The aim of this study was to establish a theoretical framework for the use of fucoidan in animal husbandry and to contribute to the theoretical underpinnings of the animal breeding and feed industries.


Assuntos
Phaeophyceae , Animais , Antioxidantes , Polissacarídeos
8.
Environ Res ; 246: 118004, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145732

RESUMO

The colonization of pathogenic microbes poses a significant clinical barrier that hinders the physiological wound-healing process. Addressing this challenge, we developed a novel wound dressing using a modified cotton gauze dressing coated with fucoidan and functionalized with silver nanoparticles (LB-Ag NPs-FN-OCG) for the rapid treatment of infected wounds. Firstly, phytochemical-capped LB-Ag NPs were synthesized and characterized using high performance liquid chromatography (HPLC), transmission electron microscopy (TEM), and zeta potential analysis. Secondly, different concentrations of LB-Ag NPs (0.1%-1%) were functionalized into FN-OCG to identify appropriate concentrations that were non-toxic with superior antibacterial activities. Screening assays, including antibacterial, hemolysis, chick chorioallantoic membrane (CAM) assay, and cytotoxicity assay, revealed that LB-Ag NPs (0.5%)-FN-OCG were non-toxic and demonstrated greater efficiency in inhibiting bacterial pathogens (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) and promoting fibroblast cell (NIH3T3) migration. In vivo assays revealed that LB-Ag NPs (0.5%)-FN-OCG treatment exhibited excellent wound healing activity (99.73 ± 0.01%) compared to other treatments by inhibiting bacterial colonization, maintaining the blood parameters, developing granulation tissue, new blood vessels, and collagen deposition. Overall, this study highlights that LB-Ag NPs (0.5%)-FN-OCG serve as a antibacterial wound dressing for infected wound healing applications.


Assuntos
Nanopartículas Metálicas , Polissacarídeos , Prata , Camundongos , Animais , Prata/química , Nanopartículas Metálicas/química , Células NIH 3T3 , Cicatrização , Antibacterianos/farmacologia , Bandagens
9.
Environ Res ; 244: 117888, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097060

RESUMO

In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Perda e Desperdício de Alimentos , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/toxicidade
10.
J Nanobiotechnology ; 22(1): 152, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575979

RESUMO

Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Polissacarídeos , Infecção dos Ferimentos , Camundongos , Animais , Ácido Hialurônico/farmacologia , Fosfatidilinositol 3-Quinases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cicatrização , Anti-Infecciosos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Inflamação
11.
Mar Drugs ; 22(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921562

RESUMO

Experiments conducted on triple-negative breast cancer have shown that fucoidan from Lessonia trabeculata (FLt) exhibits cytotoxic and antitumor properties. However, further research is necessary to gain a complete understanding of its bioactivity and level of cytotoxicity. The cytotoxic effect of FLt was determined by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Apoptosis was analyzed using annexin V and caspase 3/7 staining kit and DNA fragmentation. In addition, transcriptional expression of antiapoptotic (Bcl-2 and XIAP) and proapoptotic (caspase 8, caspase 9, and AIF) genes were analyzed in TNBC 4T1 cells. After 72 h of culture, the IC50 for FLt was 561 µg/mL, while doxorubicin (Dox) had an IC50 of 0.04 µg/mL. In addition, assays for FLt + Dox were performed. Annexin V and caspase 3/7 revealed that FLt induces early and late-stage apoptosis. DNA fragmentation results support necrotic death of 4T1 cells. Similarly, transcripts that prevent cell death were decreased, while transcripts that promote cell death were increased. This study showed that FLt induces apoptosis by both caspase-dependent and caspase-independent mechanisms. These findings suggest that FLt may have potential applications in breast cancer treatment. Further research will provide more information to elucidate the mechanism of action of FLt.


Assuntos
Apoptose , Caspases , Polissacarídeos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Polissacarídeos/farmacologia , Animais , Feminino , Caspases/metabolismo , Camundongos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Fragmentação do DNA/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Kelp
12.
Mar Drugs ; 22(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38786602

RESUMO

Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.


Assuntos
Ciclo-Oxigenase 2 , Óxido Nítrico Sintase Tipo II , Osteoartrite , Polissacarídeos , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/induzido quimicamente , Animais , Ciclo-Oxigenase 2/metabolismo , Polissacarídeos/farmacologia , Masculino , Camundongos , Modelos Animais de Doenças , Ácido Iodoacético , Estresse Oxidativo/efeitos dos fármacos , Humanos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Iodoacetatos
13.
Mar Drugs ; 22(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276650

RESUMO

Ascophyllum nodosum is a brown seaweed common in Arctic tidal waters. We have collected A. nodosum samples from the Barents Sea (BS), Irminger Sea (IS), and Norwegian Sea (NS) in different reproductive stages and have evaluated their biochemical composition, radical scavenging potential, and health risks. The total content of dominating carbohydrates (fucoidan, mannitol, alginate, and laminaran) ranged from 347 mg/g DW in NS to 528 mg/g DW in BS. The proportion of two main structural monosaccharides of fucoidan (fucose and xylose) differed significantly between the seas and reproductive phase, reaching a maximum at the fertile phase in the BS sample. Polyphenols and flavonoids totals were highest in NS A. nodosum samples and increased on average in the following order: BS < IS < NS. A positive correlation of free radical scavenging activity for seaweed extracts with polyphenols content was observed. The concentration of elements in A. nodosum from the Arctic seas region was in the following order: Ca > Mg > Sr > Fe > Al > Zn > As total > Rb > Mn > Ba > Cu > Co. Seaweeds from BS had the lowest metal pollution index (MPI) of 38.4. A. nodosum from IS had the highest MPI of 83. According to the calculated target hazard quotient (THQ) and hazard index (HI) values, Arctic A. nodosum samples pose no carcinogenic risk to adult and child health and are safe for regular consumption. Our results suggest that the Arctic A. nodosum has a remarkable potential for food and pharmaceutical industries as an underestimated source of polysaccharides, polyphenols, and flavonoids.


Assuntos
Ascophyllum , Alga Marinha , Criança , Humanos , Ascophyllum/química , Alginatos , Carboidratos , Polifenóis , Alga Marinha/química , Flavonoides
14.
Mar Drugs ; 22(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535450

RESUMO

A biocompatible, heterogeneous, fucose-rich, sulfated polysaccharide (fucoidan) is biosynthesized in brown seaweed. In this study, fucoidan was isolated from Padina arborescens (PAC) using celluclast-assisted extraction, purified, and evaluated for its anti-inflammatory potential in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Structural analyses were performed using Fourier transform infrared (FTIR) and scanning electron microscopy. Among the purified fucoidans, fucoidan fraction 5 (F5) exhibited strong inhibitory activity against LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine generation through the regulation of iNOS/COX-2, MAPK, and NF-κB signaling in LPS-induced RAW 264.7 cells. Determination of the structural characteristics indicated that purified F5 exhibited characteristics similar to those of commercial fucoidan. In addition, further analyses suggested that F5 inhibits LPS-induced toxicity, cell death, and NO generation in zebrafish models. Taken together, these findings imply that P. arborescens fucoidans have exceptional anti-inflammatory action, both in vitro and in vivo, and that they may have prospective uses in the functional food sector.


Assuntos
Lipopolissacarídeos , Phaeophyceae , Animais , Peixe-Zebra , Polissacarídeos , Inflamação , Óxido Nítrico
15.
Mar Drugs ; 22(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38786600

RESUMO

The applications of fucoidan in the food industry were limited due to its high molecular weight and low solubility. Moderate degradation was required to depolymerize fucoidan. A few studies have reported that fucoidan has potential antibacterial activity, but its antibacterial mechanism needs further investigation. In this study, the degraded fucoidans were obtained after ultraviolet/hydrogen peroxide treatment (UV/H2O2) at different times. Their physicochemical properties and antibacterial activities against Staphylococcus aureus and Escherichia coli were investigated. The results showed that the average molecular weights of degraded fucoidans were significantly decreased (up to 22.04 times). They were mainly composed of fucose, galactose, and some glucuronic acid. Fucoidan degraded for 90 min (DFuc-90) showed the strongest antibacterial activities against Staphylococcus aureus and Escherichia coli, with inhibition zones of 27.70 + 0.84 mm and 9.25 + 0.61 mm, respectively. The minimum inhibitory concentrations (MIC) were 8 mg/mL and 4 mg/mL, respectively. DFuc-90 could inhibit the bacteria by damaging the cell wall, accumulating intracellular reactive oxygen species, reducing adenosine triphosphate synthesis, and inhibiting bacterial metabolic activity. Therefore, UV/H2O2 treatment could effectively degrade fucoidan and enhance its antibacterial activity.


Assuntos
Antibacterianos , Escherichia coli , Peróxido de Hidrogênio , Testes de Sensibilidade Microbiana , Polissacarídeos , Staphylococcus aureus , Raios Ultravioleta , Polissacarídeos/farmacologia , Polissacarídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Peso Molecular , Espécies Reativas de Oxigênio/metabolismo
16.
Nano Lett ; 23(8): 3401-3411, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37036326

RESUMO

Blood and lymph are two main pathways of tumor metastasis; however, hematogenous metastasis and lymphatic metastasis are difficult to inhibit simultaneously. Ferroptosis provides a new breakthrough for metastasis inhibition, but how to effectively trigger ferroptosis in tumor cells remains a major challenge. Metastatic tumor cells are prone to ferroptosis in blood, while they may be protected from ferroptosis in lymph. In this study, a nanoplatform DA/RSL3 was constructed for the intracellular codelivery of the polyunsaturated arachidonic acid (AA) and the GPX4 inhibitor RSL3, which could not only induce ferroptosis but also alleviate ferroptosis resistance. As a result, DA/RSL3 effectively triggered ferroptosis in tumor cells, thereby impairing the ability of tumor cells to metastasize in both blood and lymph. Furthermore, a fucoidan blocking strategy was proposed to maximize the efficacy of DA/RSL3. Fu+DA/RSL3 showed excellent efficacy in 4T1 tumor-bearing mice. This ferroptosis nanotherapy is promising for metastatic cancer treatment.


Assuntos
Ferroptose , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Metástase Linfática
17.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396762

RESUMO

Osteosarcoma is a bone cancer primarily affecting teenagers. It has a poor prognosis and diminished quality of life after treatment due to chemotherapy side effects, surgical complications and post-surgical osteoporosis risks. The sulphated polysaccharide fucoidan, derived from brown algae, has been a subject of interest for its potential anti-cancer properties and its impact on bone regeneration. This study explores the influence of crude, low-molecular-weight (LMW, 10-50 kDa), medium-molecular-weight (MMW, 50-100 kDa) and high-molecular-weight (HMW, >100 kDa) fractions from Sargassum filipendula, harvested from the Colombian sea coast, as well as crude fucoidan from Fucus vesiculosus, on a specific human osteoprogenitor cell type, human embryonic-derived mesenchymal stem cells. Fourier transform infrared spectroscopy coupled with attenuated total reflection (FTIR-ATR) results showed the highest sulphation levels and lowest uronic acid content in crude extract from F. vesiculosus. There was a dose-dependent drop in focal adhesion formation, proliferation and osteogenic differentiation of cells for all fucoidan types, but the least toxicity was observed for LMW and MMW. Transmission electron microscopy (TEM), JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethylbenzimi-dazolylcarbocyanine iodide) staining and cytochrome c analyses confirmed mitochondrial damage, swollen ER and upregulated autophagy due to fucoidans, with the highest severity in the case of F. vesiculosus fucoidan. Stress-induced apoptosis-like cell death by F. vesiculosus fucoidan and stress-induced necrosis-like cell death by S. filipendula fucoidans were also confirmed. LMW and MMW doses of <200 ng/mL were the least toxic and showed potential osteoinductivity. This research underscores the multifaceted impact of fucoidans on osteoprogenitor cells and highlights the delicate balance between potential therapeutic benefits and the challenges involved in using fucoidans for post-surgery treatments in patients with osteosarcoma.


Assuntos
Filipendula , Fucus , Osteossarcoma , Sargassum , Humanos , Adolescente , Sargassum/química , Fucus/química , Osteogênese , Qualidade de Vida , Polissacarídeos/farmacologia , Polissacarídeos/química , Osteossarcoma/tratamento farmacológico
18.
J Sci Food Agric ; 104(5): 3100-3112, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38072653

RESUMO

BACKGROUND: Curcumin (CUR) and anthocyanins (ACN) are recommended due to their bioactivities. However, their nutritional values and health benefits are limited by their low oral bioavailability. The incorporation of bioactive substances into polysaccharide-protein composite nanoparticles is an effective way to enhance their bioavailability. Accordingly, this study explored the fabrication of bovine serum albumin (BSA)-fucoidan (FUC) hybrid nanoparticles using a two-step pH-driven method for the delivery of CUR and ACN. RESULTS: Under a 1:1 weight ratio of BSA to FUC, the point of zero charge moved from pH ⁓ 4.7 for BSA to around 2.5 for FUC-coated BSA, and the formation of BSA-FUC nanocomplex was pH-dependent by showing the maximum CUR emission wavelength shifting from 546 nm (CUR-loaded BSA-FUC at pH 4.7) and 544 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 4.7) to 540 nm (CUR-loaded BSA-FUC at pH 6.0) and 539 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 6.0). Elevated concentrations of NaCl from 0 to 2.5 mol L-1 caused particle size increase from about 250 to about 800 nm, but showing no effect on the encapsulation efficiency of CUR. The CUR and ACN entrapped, respectively, in the inner and outer regions of the BSA-FUC nanocomplex were released at different rates. After incubation for 10 h, more than 80% of ACN was released, while less than 25% of CUR diffused into the receiving medium, which fitted well to Logistic and Weibull models. CONCLUSION: In summary, the BSA-FUC nanocomposites produced by a two-step pH-driven method could be used for the co-delivery of hydrophilic and hydrophobic nutraceuticals. © 2023 Society of Chemical Industry.


Assuntos
Curcumina , Nanopartículas , Curcumina/química , Antocianinas , Portadores de Fármacos/química , Polissacarídeos , Nanopartículas/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Soroalbumina Bovina/química
19.
J Sci Food Agric ; 104(7): 4157-4164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38284513

RESUMO

BACKGROUND: Fucoidan has an anti-obesity effect. However, there are few studies on its mechanism. In this study, we investigated the in vitro and in silico inhibitory properties of fucoidan against pancreatic lipase for the first time. We examined the changes in composition, structure, and pancreatic lipase inhibition of fucoidan during in vitro digestion. RESULTS: Simulated saliva-gastrointestinal digestion resulted in a slight decrease in the molecular weight of fucoidan but no significant changes in the monosaccharide composition, sulfate content, and functional groups. Moreover, the digestion process significantly increased the inhibition of pancreatic lipase by fucoidan. The study on the type of inhibition showed that the inhibition of pancreatic lipase by fucoidan belonged to mixed inhibition with competitive inhibition. Molecular docking analysis showed that fucoidan could bind to the active site of pancreatic lipase. CONCLUSION: This study indicates that fucoidan can be a potential functional food for anti-obesity. © 2024 Society of Chemical Industry.


Assuntos
Lipase , Pâncreas , Polissacarídeos , Simulação de Acoplamento Molecular , Pâncreas/metabolismo , Lipase/química , Digestão
20.
Pharm Dev Technol ; 29(4): 311-321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529643

RESUMO

In this article, we described a novel antituberculosis imidazotetrazine derivative designed in fucoidan-coated liposomes to reduce its cytotoxicity and investigate its mucoadhesive properties. Firstly, fucoidan extracted from Ascophyllum nodosum was used for additional stabilization of liposomal suspensions and to give it mucoadhesive properties. PEG-600 and/or Tween-80 were used to increase the shelf life of liposomal suspension. The ratio of the fucoidan: lipids 1:2 was found to be the optimum that produces stable fucoidan-coated liposomes. The particle size of the optimum formulation was 336.3 ± 5.4, the PDI was 0.33, and the zeta potential was -39.6. This size and the practical spherical shape of the particles were confirmed by atomic force microscopy. In addition, the in vitro release profiles from uncoated and fucoidan-coated liposomes revealed significant and faster release compared to free antituberculosis agent. Using the MTT assay test, the fucoidan-coated liposomes exhibited fourteen times lower cytotoxicity (IC50 7.14 ± 0.91 µg/ml) than the free drug (IC50 0.49 ± 0.06). Moreover, the mucoadhesive capabilities of these liposomal formulations were also confirmed using snail mucin, which highlighting their potential use as an effective delivery system for antituberculosis therapy, with notable improvements in dissolution rate and reduced cytotoxicity.


Assuntos
Antituberculosos , Lipossomos , Tamanho da Partícula , Polissacarídeos , Polissacarídeos/química , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Antituberculosos/química , Animais , Liberação Controlada de Fármacos , Humanos , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA