Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(6): 140, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995482

RESUMO

Kojic acid is a fungal secondary metabolite commonly known as a tyrosinase inhibitor, that acts as a skin-whitening agent. Its applications are widely distributed in the area of cosmetics, medicine, food, and chemical synthesis. Renewable resources are the alternative feedstocks that can fulfill the demand for free sugars which are fermented for the production of kojic acid. This review highlights the current progress and importance of bioprocessing of kojic acid from various types of competitive and non-competitive renewable feedstocks. The bioprocessing advancements, secondary metabolic pathway networks, gene clusters and regulations, strain improvement, and process design have also been discussed. The importance of nitrogen sources, amino acids, ions, agitation, and pH has been summarized. Two fungal species Aspergillus flavus and Aspergillus oryzae are found to be extensively studied for kojic acid production due to their versatile substrate utilization and high titer ability. The potential of A. flavus to be a competitive industrial strain for large-scale production of kojic acid has been studied.


Assuntos
Aspergillus oryzae , Pironas , Pironas/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aminoácidos/metabolismo , Aspergillus oryzae/genética
2.
Environ Res ; 215(Pt 2): 114282, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36122702

RESUMO

Drought is common in most regions of the world, and it has a significant impact on plant growth and development. Plants, on the other hand, have evolved their own defense systems to deal with the extreme weather. The reprogramming of gene expression by microRNAs (miRNAs) is one of these defense mechanisms. miRNAs are short noncoding RNAs that have emerged as key post-transcriptional gene regulators in a variety of species. Drought stress modulates the expression of certain miRNAs that are functionally conserved across plant species. These characteristics imply that miRNA-based genetic changes might improve drought resistance in plants. This study highlights current knowledge of plant miRNA biogenesis, regulatory mechanisms and their role in drought stress responses. miRNAs functions and their adaptations by plants during drought stress has also been explained that can be exploited to promote drought-resistance among economically important crops.


Assuntos
Secas , MicroRNAs , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Fisiológico
3.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269700

RESUMO

To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant's adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants' sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants' responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.


Assuntos
MicroRNAs , Produtos Agrícolas/genética , MicroRNAs/genética , Nutrientes , Fósforo , Desenvolvimento Vegetal , Raízes de Plantas/genética , Solo , Estresse Fisiológico
4.
Stat Med ; 40(17): 3915-3936, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33906263

RESUMO

Heterogeneity is a hallmark of many complex diseases. There are multiple ways of defining heterogeneity, among which the heterogeneity in genetic regulations, for example, gene expressions (GEs) by copy number variations (CNVs), and methylation, has been suggested but little investigated. Heterogeneity in genetic regulations can be linked with disease severity, progression, and other traits and is biologically important. However, the analysis can be very challenging with the high dimensionality of both sides of regulation as well as sparse and weak signals. In this article, we consider the scenario where subjects form unknown subgroups, and each subgroup has unique genetic regulation relationships. Further, such heterogeneity is "guided" by a known biomarker. We develop a multivariate sparse fusion (MSF) approach, which innovatively applies the penalized fusion technique to simultaneously determine the number and structure of subgroups and regulation relationships within each subgroup. An effective computational algorithm is developed, and extensive simulations are conducted. The analysis of heterogeneity in the GE-CNV regulations in melanoma and GE-methylation regulations in stomach cancer using the TCGA data leads to interesting findings.


Assuntos
Variações do Número de Cópias de DNA , Melanoma , Algoritmos , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Melanoma/genética
5.
J Exp Bot ; 65(6): 1425-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24523503

RESUMO

Phytohormones are signal molecules produced within the plant that control its growth and development through the regulation of gene expression. Interaction between different phytohormone pathways is essential in coordinating tissue outgrowth in response to environmental changes, such as the adaptation of root development to water deficit or the initiation of seed germination during imbibition. Recently, microRNAs (miRNAs) have emerged as key regulators of phytohormone response pathways in planta by affecting their metabolism, distribution, and perception. Here we review current knowledge on the miRNA-mediated regulations involved in phytohormone crosstalk. We focus on the miRNAs exhibiting regulatory links with more than one phytohormone pathway and discuss their possible implication in coordinating multiple phytohormone responses during specific developmental processes.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , RNA de Plantas/genética
6.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35671849

RESUMO

In recent years, it has been established that microRNAs (miRNAs) are critical for various plant physiological regulations in numerous species. Next-generation sequencing technologies have aided to our understandings related to the critical role of miRNAs during environmental stress conditions and plant development. Light influences not just miRNA accumulation but also their biological activities via regulating miRNA gene transcription, biosynthesis, and RNA-induced silencing complex (RISC) activity. Light-regulated routes, processes, and activities can all be affected by miRNAs. Here, we will explore how light affects miRNA gene expression and how conserved and novel miRNAs exhibit altered expression across different plant species in response to variable light quality. Here, we will mainly discuss recent advances in understanding how miRNAs are involved in photomorphogenesis, and photoperiod-dependent plant biological processes such as cell proliferation, metabolism, chlorophyll pigment synthesis and axillary bud growth. The review concludes by presenting future prospects via hoping that light-responsive miRNAs can be exploited in a better way to engineer economically important crops to ensure future food security.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/metabolismo , Transcrição Gênica
7.
Chemosphere ; 294: 133723, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35085614

RESUMO

The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Biopolímeros , Poluição Ambiental , Plásticos , Poli-Hidroxialcanoatos/química
8.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139379

RESUMO

One of the most damaging issues to cultivatable land is soil salinity. While salt stress influences plant growth and yields at low to moderate levels, severe salt stress is harmful to plant growth. Mineral shortages and toxicities frequently exacerbate the problem of salinity. The growth of many plants is quantitatively reduced by various levels of salt stress depending on the stage of development and duration of stress. Plants have developed various mechanisms to withstand salt stress. One of the key strategies is the utilization of microRNAs (miRNAs) that can influence gene regulation at the post-transcriptional stage under different environmental conditions, including salinity. Here, we have reviewed the miRNA-mediated adaptations of various plant species to salt stress and other abiotic variables. Moreover, salt responsive (SR)-miRNAs, their targets, and corresponding pathways have also been discussed. The review article concludes by suggesting that the utilization of miRNAs may be a vital strategy to generate salt tolerant crops ensuring food security in the future.


Assuntos
MicroRNAs , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Salino/genética , Solo , Estresse Fisiológico/genética
9.
Environ Sci Pollut Res Int ; 29(46): 69197-69212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35951237

RESUMO

Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.


Assuntos
MicroRNAs , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Plantas/genética , RNA de Plantas , Estresse Fisiológico/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA