Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295787

RESUMO

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Assuntos
Gastrite , Neoplasias Gástricas , Infecções Estreptocócicas , Streptococcus anginosus , Animais , Humanos , Camundongos , Atrofia/patologia , Carcinogênese , Transformação Celular Neoplásica , Mucosa Gástrica , Gastrite/patologia , Inflamação/patologia , Proteínas Quinases Ativadas por Mitógeno , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Streptococcus anginosus/fisiologia , Infecções Estreptocócicas/patologia
2.
Cell ; 179(3): 644-658.e13, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607511

RESUMO

Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.


Assuntos
Imunidade Adaptativa/genética , Diarreia/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Rotavirus/microbiologia , Animais , Anti-Infecciosos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Diarreia/prevenção & controle , Diarreia/virologia , Fezes/microbiologia , Regulação da Expressão Gênica/genética , Humanos , Íleo/microbiologia , Íleo/patologia , Íleo/virologia , Interferons/genética , Interleucina-17/genética , Interleucinas/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Microbiota/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Interleucina 22
3.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053971

RESUMO

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Assuntos
Autoantígenos/imunologia , Bacteroides/imunologia , Colite/imunologia , Microbioma Gastrointestinal , Glucose-6-Fosfatase/imunologia , Adulto , Animais , Bacteroides/classificação , Bacteroides/enzimologia , Colite/microbiologia , Feminino , Glucose-6-Fosfatase/genética , Humanos , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mimetismo Molecular , Linfócitos T/imunologia
4.
Infect Immun ; 92(6): e0006524, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722167

RESUMO

Giardia lamblia is an important protozoan cause of diarrheal disease worldwide, delayed development and cognitive impairment in children in low- and middle-income countries, and protracted post-infectious syndromes in developed regions. G. lamblia resides in the lumen and at the epithelial surface of the proximal small intestine but is not mucosa invasive. The protozoan parasite is genetically diverse with significant genome differences across strains and assemblages. Animal models, particularly murine models, have been instrumental in defining mechanisms of host defense against G. lamblia, but mice cannot be readily infected with most human pathogenic strains. Antibiotic pretreatment can increase susceptibility, suggesting that the normal microbiota plays a role in controlling G. lamblia infection in mice, but the broader implications on susceptibility to diverse strains are not known. Here, we have used gnotobiotic mice to demonstrate that robust intestinal infection can be achieved for a broad set of human-pathogenic strains of the genetic assemblages A and B. Furthermore, gnotobiotic mice were able to eradicate infection with a similar kinetics to conventional mice after trophozoite challenge. Germ-free mice could also be effectively immunized by the mucosal route with a protective antigen, α1-giardin, in a manner dependent on CD4 T cells. These results indicate that the gnotobiotic mouse model is powerful for investigating acquired host defenses in giardiasis, as the mice are broadly susceptible to diverse G. lamblia strains yet display no apparent defects in mucosal immunity needed for controlling and eradicating this lumen-dwelling pathogen.


Assuntos
Modelos Animais de Doenças , Vida Livre de Germes , Giardia lamblia , Giardíase , Animais , Giardíase/imunologia , Giardíase/parasitologia , Giardia lamblia/imunologia , Giardia lamblia/genética , Camundongos , Vacinas Protozoárias/imunologia , Vacinação , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Humanos , Feminino
5.
BMC Microbiol ; 24(1): 283, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085808

RESUMO

BACKGROUND: The guts of mammals are home to trillions of microbes, forming a complex and dynamic ecosystem. Gut microbiota is an important biological barrier for maintaining immune homeostasis. Recently, the use of antibiotics to clear gut microbiota has gained popularity as a low cost and easy-to-use alternative to germ-free animals. However, the effect of the duration of the antibiotic cocktail on the gut microbiome is unclear, and more importantly, the effect of dramatic changes in the gut microbiota on intestinal tissue morphology and local immune response is rarely reported. RESULTS: We observed a significant reduction in fecal microbiota species and abundance after 1 week of exposure to an antibiotic cocktail, gavage twice daily by intragastric administration. In terms of composition, Bacteroidetes and Firmicutes were replaced by Proteobacteria. Extending antibiotic exposure to 2-3 weeks did not significantly improve the overall efficiency of microbiotal consumption. No significant histomorphological changes were observed in the first 2 weeks of antibiotic cocktail exposure, but the expression of inflammatory mediators in intestinal tissue was increased after 3 weeks of antibiotic cocktail exposure. Mendelian randomization analysis showed that Actinobacteria had a significant causal association with the increase of IL-1ß (OR = 1.65, 95% CI = 1.23 to 2.21, P = 0.007) and TNF-α (OR = 1.81, 95% CI = 1.26 to 2.61, P = 0.001). CONCLUSIONS: Our data suggest that treatment with an antibiotic cocktail lasting 1 week is sufficient to induce a significant reduction in gut microbes. 3 weeks of antibiotic exposure can lead to the colonization of persistant microbiota and cause changes in intestinal tissue and local immune responses.


Assuntos
Antibacterianos , Fezes , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Animais , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-1beta/genética , Camundongos , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Bacteroidetes/efeitos dos fármacos , Firmicutes/efeitos dos fármacos
6.
Brain Behav Immun ; 116: 34-51, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38030048

RESUMO

Changes in the intestinal microbiota have been observed in patients with anti-N-methyl-D-aspartate receptor encephalitis (NMDARE). However, whether and how the intestinal microbiota is involved in the pathogenesis of NMDARE susceptibility needs to be demonstrated. Here, we first showed that germ-free (GF) mice that underwent fecal microbiota transplantation (FMT) from NMDARE patients, whose fecal microbiota exhibited low short-chain fatty acid content, decreased abundance of Lachnospiraceae, and increased abundance of Verrucomicrobiota, Akkermansia, Parabacteroides, Oscillospirales, showed significant behavioral deficits. Then, these FMT mice were actively immunized with an amino terminal domain peptide from the GluN1 subunit (GluN1356-385) to mimic the pathogenic process of NMDARE. We found that FMT mice showed an increased susceptibility to an encephalitis-like phenotype characterized by more clinical symptoms, greater pentazole (PTZ)-induced susceptibility to seizures, and higher levels of T2 weighted image (T2WI) hyperintensities following immunization. Furthermore, mice with dysbiotic microbiota had impaired blood-brain barrier integrity and a proinflammatory condition. In NMDARE-microbiota recipient mice, the levels of Evan's blue (EB) dye extravasation increased, ZO-1 and claudin-5 expression decreased, and the levels of proinflammatory cytokines (IL-1, IL-6, IL-17, TNF-α and LPS) increased. Finally, significant brain inflammation, mainly in hippocampal and cortical regions, with modest neuroinflammation, immune cell infiltration, and reduced expression of NMDA receptors were observed in NMDARE microbiota recipient mice following immunization. Overall, our findings demonstrated that intestinal dysbiosis increased NMDARE susceptibility, suggesting a new target for limiting the occurrence of the severe phenotype of NMDARE.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Humanos , Camundongos , Animais , Barreira Hematoencefálica , Disbiose , Homeostase , Permeabilidade
7.
BMC Biol ; 21(1): 207, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794486

RESUMO

BACKGROUND: The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS: In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS: The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.


Assuntos
Intestinos , Microbiota , Gravidez , Masculino , Feminino , Animais , Camundongos , Placenta/metabolismo , Encéfalo/metabolismo , Feto/metabolismo
8.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892368

RESUMO

Intestinal epithelium renewal strictly depends on fine regulation between cell proliferation, differentiation, and apoptosis. While murine intestinal microbiota has been shown to modify some epithelial cell kinetics parameters, less is known about the role of the human intestinal microbiota. Here, we investigated the rate of intestinal cell proliferation in C3H/HeN germ-free mice associated with human flora (HFA, n = 8), and in germ-free (n = 15) and holoxenic mice (n = 16). One hour before sacrifice, all mice were intraperitoneally inoculated with 5-bromodeoxyuridine (BrdU), and the number of BrdU-positive cells/total cells (labelling index, LI), both in the jejunum and the colon, was evaluated by immunohistochemistry. Samples were also observed by scanning electron microscopy (SEM). Moreover, the microbiota composition in the large bowel of the HFA mice was compared to that of of human donor's fecal sample. No differences in LI were found in the small bowels of the HFA, holoxenic, and germ-free mice. Conversely, the LI in the large bowel of the HFA mice was significantly higher than that in the germ-free and holoxenic counterparts (p = 0.017 and p = 0.048, respectively). In the holoxenic and HFA mice, the SEM analysis disclosed different types of bacteria in close contact with the intestinal epithelium. Finally, the colonic microbiota composition of the HFA mice widely overlapped with that of the human donor in terms of dominant populations, although Bifidobacteria and Lactobacilli disappeared. Despite the small sample size analyzed in this study, these preliminary findings suggest that human intestinal microbiota may promote a high proliferation rate of colonic mucosa. In light of the well-known role of uncontrolled proliferation in colorectal carcinogenesis, these results may deserve further investigation in a larger population study.


Assuntos
Proliferação de Células , Colo , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Camundongos , Colo/microbiologia , Colo/metabolismo , Masculino , Vida Livre de Germes , Feminino , Camundongos Endogâmicos C3H , Fezes/microbiologia
9.
Brain Behav Immun ; 114: 94-110, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37557963

RESUMO

The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects.

10.
Cell Mol Life Sci ; 79(4): 221, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377005

RESUMO

The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear. Recently, the impact of molecules and metabolites derived from the intestinal microbiota on T cell ontogeny in the thymus has been investigated in more detail. In this review, we will discuss the recent findings in the emerging field of the gut-thymus axis and we will highlight the current questions and challenges in the field.


Assuntos
Microbioma Gastrointestinal , Imunidade nas Mucosas , Mucosa Intestinal , Fígado , Linfócitos T
11.
Lipids Health Dis ; 22(1): 63, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189092

RESUMO

BACKGROUND: Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS: Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS: GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS: These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.


Assuntos
Colite , Dinitrobenzenos , Camundongos , Animais , Dinitrobenzenos/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Inflamação , Lipídeos
12.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445951

RESUMO

The hepatic matrisome is involved in the remodeling phase of liver regeneration. As the gut microbiota has been implicated in liver regeneration, we investigated its role in liver regeneration focusing on gene expression of the hepatic matrisome after partial hepatectomy (PHx) in germ-free (GF) mice, and in GF mice reconstituted with normal gut microbiota (XGF). Liver mass restoration, hepatocyte proliferation, and immune response were assessed following 70% PHx. Hepatic matrisome and collagen gene expression were also analyzed. Reduced liver weight/body weight ratio, mitotic count, and hepatocyte proliferative index at 72 h post PHx in GF mice were preceded by reduced expression of cytokine receptor genes Tnfrsf1a and Il6ra, and Hgf gene at 3 h post PHx. In XGF mice, these indices were significantly higher than in GF mice, and similar to that of control mice, indicating normal liver regeneration. Differentially expressed genes (DEGs) of the matrisome were lower in GF compared to XGF mice at both 3 h and 72 h post PHx. GF mice also demonstrated lower collagen expression, with significantly lower expression of Col1a1, Col1a2, Col5a1, and Col6a2 compared to WT mice at 72 h post PHx. In conclusion, enhanced liver regeneration and matrisome expression in XGF mice suggests that interaction of the gut microbiota and matrisome may play a significant role in the regulation of hepatic remodeling during the regenerative process.


Assuntos
Hepatectomia , Regeneração Hepática , Animais , Camundongos , Regeneração Hepática/genética , Fígado/metabolismo , Expressão Gênica
13.
J Neurosci Res ; 100(2): 444-460, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935171

RESUMO

Emerging evidence indicates that probiotics can influence the gut-brain axis to ameliorate somatic and behavioral symptoms associated with brain disorders. However, whether probiotics have effects on the electrophysiological activities of individual neurons in the brain has not been evaluated at a single-neuron resolution, and whether the neuronal effects of probiotics depend on the gut microbiome status have yet to be tested. Thus, we conducted whole-cell patch-clamp recording-assisted electrophysiological characterizations of the neuronal effects of probiotics in male germ-free (GF) mice with and without gut microbiome colonization. Two weeks of treatment with probiotics (Lactobacillus rhamnosus and Bifidobacterium animalis) significantly and selectively increased the intrinsic excitability of hippocampal CA1 pyramidal neurons, whereas reconstituting gut microbiota in GF mice reversed the effects of the probiotics leading to a decreased intrinsic excitability in hippocampal neurons. This bidirectional modulation of neuronal excitability by probiotics was observed in hippocampal neurons with corresponding basal membrane property and action potential waveform changes. However, unlike the hippocampus, the amygdala excitatory neurons did not show any electrophysiological changes to the probiotic treatment in either GF or conventionalized GF mice. Our findings demonstrate for the first time how probiotic treatment can have a significant influence on the electrophysiological properties of neurons, bidirectionally modulating their intrinsic excitability in a gut microbiota and brain area-specific manner.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Microbioma Gastrointestinal/fisiologia , Hipocampo , Masculino , Camundongos , Neurônios , Probióticos/farmacologia , Células Piramidais/fisiologia
14.
Mol Carcinog ; 61(10): 941-957, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856887

RESUMO

Dietary rice bran (RB) has shown capacity to influence metabolism by modulation of gut microbiota in individuals at risk for colorectal cancer (CRC), which warranted attention for delineating mechanisms for bidirectional influences and cross-feeding between the host and RB-modified gut microbiota to reduce CRC. Accordingly, in the present study, fermented rice bran (FRB, fermented with a RB responsive microbe Bifidobacterium longum), and non-fermented RB were fed as 10% w/w (diet) to gut microbiota-intactspf or germ-free micegf to investigate comparative efficacy against inflammation-associated azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC. Results indicated both microbiota-dependent and independent mechanisms for RB meditated protective efficacy against CRC that was associated with reduced neoplastic lesion size and local-mucosal/systemic inflammation, and restoration of colonic epithelial integrity. Enrichment of beneficial commensals (such as, Clostridiales, Blautia, Roseburia), phenolic metabolites (benzoate and catechol metabolism), and dietary components (ferulic acid-4 sulfate, trigonelline, and salicylate) were correlated with anti-CRC efficacy. Germ-free studies revealed gender-specific physiological variables could differentially impact CRC growth and progression. In the germ-free females, the RB dietary treatment showed a ∼72% reduction in the incidence of colonic epithelial erosion when compared to the ∼40% reduction in FRB-fed micegf . Ex vivo fermentation of RB did not parallel the localized-protective benefits of gut microbial metabolism by RB in damaged colonic tissues. Findings from this study suggest potential needs for safety considerations of fermented fiber rich foods as dietary strategies against severe inflammation-associated colon tumorigenesis (particularly with severe damage to the colonic epithelium).


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Oryza , Animais , Azoximetano/toxicidade , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Colo/patologia , Sulfato de Dextrana/toxicidade , Dieta , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oryza/metabolismo
15.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232929

RESUMO

Several studies have indicated the beneficial anti-inflammatory effect of butyrate in inflammatory bowel disease (IBD) therapy implying attempts to increase butyrate production in the gut through orally administered dietary supplementation. Through the gut-liver axis, however, butyrate may reach directly the liver and influence the drug-metabolizing ability of hepatic enzymes, and, indirectly, also the outcome of applied pharmacotherapy. The focus of our study was on the liver microsomal cytochrome P450 (CYP) 2A5, which is a mouse orthologue of human CYP2A6 responsible for metabolism of metronidazole, an antibiotic used to treat IBD. Our findings revealed that specific pathogen-free (SPF) and germ-free (GF) mice with dextran sulfate sodium (DSS)-induced colitis varied markedly in enzyme activity of CYP2A and responded differently to butyrate pre-treatment. A significant decrease (to 50%) of the CYP2A activity was observed in SPF mice with colitis; however, an administration of butyrate prior to DSS reversed this inhibition effect. This phenomenon was not observed in GF mice. The results highlight an important role of gut microbiota in the regulation of CYP2A under inflammatory conditions. Due to the role of CYP2A in metronidazole metabolism, this phenomenon may have an impact on the IBD therapy. Butyrate administration, hence, brings promising therapeutic potential for improving symptoms of gut inflammation; however, possible interactions with drug metabolism need to be further studied.


Assuntos
Butiratos , Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Metronidazol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
16.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077073

RESUMO

Studies have begun to reveal significant connections between the gut microbiome and various retinal diseases, including age-related macular degeneration (AMD). As critical supporting tissues of the retina, the retinal pigment epithelium (RPE) and underlying choroid play a critical role in retinal homeostasis and degeneration. However, the relationship between the microbiome and RPE/choroid remains poorly understood, particularly in animal models of AMD. In order to better elucidate this role, we performed high-throughput RNA sequencing of RPE/choroid tissue in germ-free (GF) and specific pathogen-free (SPF) mice. Furthermore, utilizing a specialized laser-induced choroidal neovascularization (CNV) model that we developed, we compared CNV size and inflammatory response between GF and SPF mice. After correction of raw data, 660 differentially expressed genes (DEGs) were identified, including those involved in angiogenesis regulation, scavenger and cytokine receptor activity, and inflammatory response-all of which have been implicated in AMD pathogenesis. Among lasered mice, the GF group showed significantly decreased CNV lesion size and microglial infiltration around CNV compared to the SPF group. Together, these findings provide evidence for a potential gut-RPE/choroidal axis as well as a correlation with neovascular features of AMD.


Assuntos
Neovascularização de Coroide , Microbioma Gastrointestinal , Degeneração Macular , Animais , Corioide/irrigação sanguínea , Neovascularização de Coroide/genética , Neovascularização de Coroide/patologia , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina/patologia , Transcriptoma
17.
BMC Microbiol ; 21(1): 165, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082713

RESUMO

BACKGROUND: Lactobacillus rhamnosus GG (LGG) is the most widely used probiotic, but the mechanisms underlying its beneficial effects remain unresolved. Previous studies typically inoculated LGG in hosts with established gut microbiota, limiting the understanding of specific impacts of LGG on host due to numerous interactions among LGG, commensal microbes, and the host. There has been a scarcity of studies that used gnotobiotic animals to elucidate LGG-host interaction, in particular for gaining specific insights about how it modifies the metabolome. To evaluate whether LGG affects the metabolite output of pathobionts, we inoculated with LGG gnotobiotic mice containing Propionibacterium acnes, Turicibacter sanguinis, and Staphylococcus aureus (PTS). RESULTS: 16S rRNA sequencing of fecal samples by Ion Torrent and MinION platforms showed colonization of germ-free mice by PTS or by PTS plus LGG (LTS). Although the body weights and feeding rates of mice remained similar between PTS and LTS groups, co-associating LGG with PTS led to a pronounced reduction in abundance of P. acnes in the gut. Addition of LGG or its secretome inhibited P. acnes growth in culture. After optimizing procedures for fecal metabolite extraction and metabolomic liquid chromatography-mass spectrometry analysis, unsupervised and supervised multivariate analyses revealed a distinct separation among fecal metabolites of PTS, LTS, and germ-free groups. Variables-important-in-projection scores showed that LGG colonization robustly diminished guanine, ornitihine, and sorbitol while significantly elevating acetylated amino acids, ribitol, indolelactic acid, and histamine. In addition, carnitine, betaine, and glutamate increased while thymidine, quinic acid and biotin were reduced in both PTS and LTS groups. Furthermore, LGG association reduced intestinal mucosal expression levels of inflammatory cytokines, such as IL-1α, IL-1ß and TNF-α. CONCLUSIONS: LGG co-association had a negative impact on colonization of P. acnes, and markedly altered the metabolic output and inflammatory response elicited by pathobionts.


Assuntos
Infecções por Bactérias Gram-Positivas/microbiologia , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/administração & dosagem , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Firmicutes/crescimento & desenvolvimento , Firmicutes/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/metabolismo , Humanos , Lacticaseibacillus rhamnosus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propionibacterium acnes/crescimento & desenvolvimento , Propionibacterium acnes/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia
18.
Microb Pathog ; 158: 105020, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089791

RESUMO

Gut microbial dysbiosis is closely associated with cow's milk protein allergy (CMPA) during infancy. Recent research has highlighted the crucial role of the commensal microbiota-induced intestinal regulatory T (Treg) cell response in the development of oral tolerance and protection against IgE-mediated food allergies. However, the influences of CMPA (particularly non-IgE-mediated CMPA)-associated microbial dysbiosis on Treg cell-mediated intestinal immune tolerance and homeostasis remain poorly characterized. To investigate this issue, fecal microbiota from infant donors with food protein-induced allergic proctocolitis (FPIAP) associated with cow's milk, which is the most frequent clinical type of non-IgE-mediated gastrointestinal CMPA, and from age-matched healthy controls were transplanted into germ-free mice in this study. Two weeks post fecal microbiota transplantation, the gut microbiome of the recipient mice was analyzed by 16S rRNA gene sequencing, and the intestinal immunological alterations associated with the Treg cell compartment and intestinal immune homeostasis were detected. The specific gut microbial phylotypes that were potentially responsible for the disruption of intestinal immune homeostasis were also analyzed. We observed that the main characteristics of the gut microbiome in infant donors could be stably maintained in recipient mice. We also found that mice colonized with the gut microbiome from infants with cow's milk-induced FPIAP showed significant deficiencies in the accumulation and function of intestinal Treg cells. Furthermore, these mice showed disrupted intestinal immune homeostasis, which was characterized by an overactivated Th2 biased immune response. We further identified two potentially pathogenic genera that contribute to this disruption. Overall, our results highlight a destructive effect of non-IgE-mediated CMPA-associated microbial dysbiosis on intestinal immune tolerance and homeostasis. We believe these findings will help improve our understanding of the gut microbiota-mediated pathogenesis of non-IgE-mediated CMPA in the future.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade a Leite , Animais , Bovinos , Disbiose , Feminino , Homeostase , Tolerância Imunológica , Camundongos , RNA Ribossômico 16S/genética , Linfócitos T Reguladores
19.
Parasitology ; : 1-8, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34075861

RESUMO

Parasitic worms are amongst the most common pathogens to infect humans and have a long-established history of inflicting disease in their hosts. There is a large body of evidence that states intestine-dwelling helminths ensure their survival by influencing the host immune response against them. In recent years, it has become apparent that the large and diverse microbial communities that exist in the gastrointestinal (GI) tract of the host and within the parasite itself have a pivotal role in worm survival and persistence. Using a variety of mouse models (including laboratory, germ-free and rewilded mice), there have been new insights into how bacteria and worms interact with each other; this includes the discovery that Trichuris is unable to hatch and/or infect their host in the absence of bacteria, and that these worms contain a Trichuris-specific gut microbiota. These interactions are determined in part by the capacity of the host, gut microbiota and worms to communicate via metabolites such as butyrate, which are microbially derived and have known immunoregulatory properties. By exploring the contribution of gut bacteria to worm infections and the intricate relationship that exists between them, an exciting and emerging field in whipworm parasitology is established.

20.
Appl Microbiol Biotechnol ; 105(4): 1669-1681, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33511441

RESUMO

The gut microbiota is closely related to host health and disease. However, there are no suitable animal models available at present for exploring its functions. We analyzed the effect of 3 different antibiotic cocktails (ABx) via two administration routes on the composition of murine gut microbiota, as well as on the general physiological and metabolic indices. High-throughput 16S rRNA sequencing showed that ABx treatment altered the gut microbiota community structure, and also caused low-degree inflammation in the colon. In addition, ad libitum administration of antibiotics depleted the gut microbiota more effectively compared to direct oral gavage, especially with 3ABx. The ABx treatment also had a significant impact on renal and liver functions, as indicated by the altered serum levels of creatinine, urea, total triglycerides, and total cholesterol. Finally, Spearman's correlation analysis showed that the predominant bacterial genera resulting from ABx intervention, including Lactobacillus, Roseburia, and Candidatus-Saccharimonas, were negatively correlated with renal function indices. Taken together, different antibiotic combinations and interventions deplete the gut microbiota and induce physiological changes in the host. Our findings provide the basis for developing an adaptive animal model for studying gut microbiota. KEY POINTS: • Ad libitum administration of 3ABx can effectively deplete intestinal microbiota. • ABx treatment may have slight effect on renal and liver function. • The levels of urea and creatinine correlated with the growth of Roseburia.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos/farmacologia , Lactobacillus , Camundongos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA