Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.637
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2402116121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739803

RESUMO

Pyrite is the most common sulfide mineral in hydrothermal ore-forming systems. The ubiquity and abundance of pyrite, combined with its ability to record and preserve a history of fluid evolution in crustal environments, make it an ideal mineral for studying the genesis of hydrothermal ore deposits, including those that host critical metals. However, with the exception of boiling, few studies have been able to directly link changes in pyrite chemistry to the processes responsible for bonanza-style gold mineralization. Here, we report the results of high-resolution secondary-ion mass spectrometry and electron microprobe analyses conducted on pyrite from the Brucejack epithermal gold deposit, British Columbia. Our δ34S and trace element results reveal that the Brucejack hydrothermal system experienced abrupt fluctuations in fluid chemistry, which preceded and ultimately coincided with the onset of ultra-high-grade mineralization. We argue that these fluctuations, which include the occurrence of extraordinarily negative δ34S values (e.g., -36.1‰) in zones of auriferous, arsenian pyrite, followed by sharp increases of δ34S values in syn-electrum zones of nonarsenian pyrite, were caused by vigorous, fault valve-induced episodic boiling (flashing) and subsequent inundation of the hydrothermal system by seawater. We conclude that the influx of seawater was the essential step to forming bonanza-grade electrum mineralization by triggering, through the addition of cationic flocculants and cooling, the aggregation of colloidal gold suspensions. Moreover, our study demonstrates the efficacy of employing high-resolution, in situ analytical techniques to map out individual ore-forming events in a hydrothermal system.

2.
Proc Natl Acad Sci U S A ; 121(5): e2318265121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261618

RESUMO

Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Camundongos , Feminino , Imagem Óptica , Anexina A5 , Apoptose , Ouro
3.
Proc Natl Acad Sci U S A ; 121(10): e2318537121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412123

RESUMO

Atomically precise control over anisotropic nanoclusters constitutes a grand challenge in nanoscience. In this work, we report our success in achieving a periodic series of atomically precise gold quantum rods (abbrev. Au QRs) with unusual excitonic properties. These QRs possess hexagonal close-packed kernels with a constant three-atom diameter but increasing aspect ratios (ARs) from 6.3 to 18.7, all being protected by the same thiolate (SR) ligand. The kernels of the QRs are in a Au1-(Au3)n-Au1 configuration (where n is the number of Au3 layers) and follow a periodic elongation with a uniform Au18(SR)12 increment consisting of four Au3 layers. These Au QRs possess distinct HOMO-LUMO gaps (Eg = 0.6 to 1.3 eV) and exhibit strongly polarized excitonic transition along the longitudinal direction, resulting in very intense absorption in the near-infrared (800 to 1,700 nm). While excitons in gapped systems and plasmons in gapless systems are distinctly different types of excitations, the strongly polarized excitons in Au QRs surprisingly exhibit plasmon-like behaviors manifested in the shape-induced polarization, very intense absorption (~106 M-1 cm-1), and linear scaling relations with the AR, all of which resemble the behaviors of conventional metallic-state Au nanorods (i.e., gapless systems), but the QRs possess distinct gaps and very long excited-state lifetimes (10 to 2,122 ns), which hold promise in applications such as near-infrared solar energy utilization, hot carrier generation and transfer. The observation of plasmon-like behaviors from single-electron transitions in Au QRs elegantly bridges the distinct realms of single-electron and collective-electron excitations and may stimulate more research on excitonics and plasmonics.

4.
Proc Natl Acad Sci U S A ; 120(50): e2314192120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048465

RESUMO

The field of one-dimensional semiconducting materials holds a wide variety of captivating applications, such as photovoltaic cells, electronic devices, catalysis cells, lasers, and more. The tunability of electrical, mechanical, or optical attributes of a semiconductor crystal relies on the ability to control and pattern the crystal's growth direction, orientation, and dimensions. In this study, we harvest the unique properties of crystallographic defects in Au substrates, specifically twin boundaries, to fabricate selective epitaxial growth of semiconducting nanocrystals. Different crystallographic defects were previously shown to enhance materials properties, such as, screw dislocations providing spiral crystal growth, dislocation outcrops, and vacancies increasing their catalytic activity, dislocation strengthening, and atomic doping changing the crystal's electrical properties. Here, we present a unique phenomenon of directed growth of semiconductor crystals of gold(I)-cyanide (AuCN) on the surface of thin Au layers, using traces of deformation twins on the surface. We show that emergence of deformation twins to the {111} Au surface leads to the formation of ledges, exposing new {001} and {111} facets on the surface. We propose that this phenomenon leads to epitaxial growth of AuCN on the freshly exposed {111} facets of the twin boundary trace ledges. Specific orientations of the twin boundaries with respect to the Au surface allow for patterned growth of AuCN in the <110> orientations. Nano-scale patterning of AuCN semiconductors may provide an avenue for property tuning, particularly the band gap acquired.

5.
Proc Natl Acad Sci U S A ; 120(42): e2305662120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812696

RESUMO

Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs. The folic acids support binding to selected tubule cells with overexpression of folate receptors and promote retention in the fibrotic kidney. Upon intravenous injection, this nanoparticle can selectively accumulate in the fibrotic kidney over the nonfibrotic contralateral kidney at ~3.6% of the injected dose. Delivery to the fibrotic kidney depends on nanoparticle size and disease stage. Notably, a single injection of this self-therapeutic nanoparticle reduces tissue degeneration, inhibits genes related to the extracellular matrix, and treats fibrosis more effectively than standard Captopril therapy. Our data underscore the importance of constructing CKD nanomedicines based on renal pathophysiology.


Assuntos
Nanopartículas Metálicas , Insuficiência Renal Crônica , Camundongos , Animais , Ouro/farmacologia , Ácido Fólico/metabolismo , Nanopartículas Metálicas/uso terapêutico , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose
6.
Proc Natl Acad Sci U S A ; 120(21): e2300066120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186821

RESUMO

It is now well known that solids under ultra-high-pressure shock compression will enter the warm dense matter (WDM) regime which connects condensed matter and hot plasma. How condensed matter turns into the WDM, however, remains largely unexplored due to the lack of data in the transition pressure range. In this letter, by employing the unique high-Z three-stage gas gun launcher technique developed recently, we compress gold into TPa shock pressure to fill the gap inaccessible by the two-stage gas gun and laser shock experiments. With the aid of high-precision Hugoniot data obtained experimentally, we observe a clear softening behavior beyond ~560 GPa. The state-of-the-art ab-initio molecular dynamics calculations reveal that the softening is caused by the ionization of 5d electrons in gold. This work quantifies the partial ionization effect of electrons under extreme conditions, which is critical to model the transition region between condensed matter and WDM.

7.
Methods ; 221: 12-17, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006950

RESUMO

This research aims to develop a robust and quantitative method for measuring creatinine levels by harnessing the enhanced Tyndall effect (TE) phenomenon. The envisioned sensing assay is designed for practical deployment in resource-limited settings or homes, where access to advanced laboratory facilities is limited. Its primary objective is to enable regular and convenient monitoring of renal healthcare, particularly in cases involving elevated creatinine levels. The creatinine sensing strategy is achieved based on the aggregation of gold nanoparticles (AuNPs) triggered via the direct crosslinking reaction between creatinine and AuNPs, where an inexpensive laser pointer was used as a handheld light source and a smartphone as a portable device to record the TE phenomenon enhanced by the creatinine-induced aggregation of AuNPs. After evaluation and optimization of parameters such as AuNP concentrations and TE measurement time, the subsequent proof-of-concept experiments demonstrated that the average gray value change of TE images was linearly related to the logarithm of creatinine concentrations in the range of 1-50 µM, with a limit of detection of 0.084 µM. Meanwhile, our proposed creatinine sensing platform exhibited highly selective detection in complex matrix environments. Our approach offers a straightforward, cost-effective, and portable means of creatinine detection, presenting an encouraging signal readout mechanism suitable for point-of-care (POC) applications. The utilization of this assay as a POC solution exhibits potential for expediting timely interventions and enhancing healthcare outcomes among individuals with renal health issues.


Assuntos
Nanopartículas Metálicas , Smartphone , Humanos , Creatinina , Ouro , Urinálise , Colorimetria/métodos
8.
Proc Natl Acad Sci U S A ; 119(18): e2120753119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446687

RESUMO

SignificanceThe exploration of gold-based colorants in glass and glazes led Nobel Laureate Richard Zsigmondy to the study of colloids, and to the development, with Henry Siedentopf, of the earliest microscopes capable of resolving such small length scales. Zsigmondy's studies were preceded by alchemical investigations starting in the 17th century that yielded the gold-based Purple of Cassius, and experiments in the early 18th century resulting in an unusual purple iridescent porcelain overglaze, called Böttger luster, at the Meissen Manufactory. We discuss the first nano-scale characterization of Böttger luster, its successful replication, and propose an explanation for its optical properties based on the physics of scattering and interference of nanoparticle arrays.

9.
Proc Natl Acad Sci U S A ; 119(29): e2123527119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858309

RESUMO

A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.


Assuntos
Meios de Contraste , Gadolínio , Ouro , Imageamento por Ressonância Magnética , Nanoconchas , Terapia Fototérmica , Meios de Contraste/síntese química , Gadolínio/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanoconchas/química , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Dióxido de Silício/química
10.
Proc Natl Acad Sci U S A ; 119(19): e2116380119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500124

RESUMO

SignificanceThere is a common consensus that lode gold deposits mostly precipitated from metamorphic fluids via fluid boiling and/or fluid-rock interaction, but whether magmatic hydrothermal fluids and the mixing of such fluids with an external component have played a vital role in the formation of lode gold deposits remains elusive. We use garnet secondary ion mass spectrometry oxygen isotope analysis to demonstrate that the world-class Dongping lode gold deposit has been formed by multiple pulses of magmatic hydrothermal fluids and their mixing with large volumes of meteoric water. This study opens an opportunity to tightly constrain the origin of lode gold deposits worldwide and other hydrothermal systems that may have generated giant ore deposits in the Earth's crust.

11.
Nano Lett ; 24(2): 549-556, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174901

RESUMO

Rhombic dodecahedral nanocrystals have been considered particularly difficult to synthesize because they are enclosed by {110}, a low-index facet with the greatest surface energy. Recently, we demonstrated the use of seed-mediated growth for the facile and robust synthesis of Au rhombic dodecahedral nanocrystals (AuRD). While the unique shape and surface structure of AuRD are desirable for potential applications in plasmonics and catalysis, respectively, their high surface energy makes them highly susceptible to thermal degradation. Here we demonstrate that it is feasible to greatly improve the thermal stability with some sacrifice to the plasmonic properties of the original AuRD by coating their surface with an ultrathin shell made of Pt. Our in situ electron microscopy analysis indicates that the ultrathin Pt coating can increase the thermal stability from 60 up to 450 °C, a trend that is also supported by the results from a computational study.

12.
Nano Lett ; 24(20): 5944-5951, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38588536

RESUMO

DNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl2. Atomic force microscopy (AFM) characterization showed several micrometer long tubular structures that were used as templates for the positioning of plasmonic nanoparticles (NPs) along a three-dimensional helical path using DNA tethers. As imaged by high-resolution scanning transmission electron microscopy (HR-STEM) and modeled by theoretical calculations, the NPs distributed into a "fusilli" fashion (i.e., a helical pasta shape), displaying chiroptical activity as revealed by a bisignated CD absorption, centered at the plasmon resonance wavelength. The present structures contribute to enrich the ever-developing arena of chiroplasmonic DNA-based nanomaterials and demonstrate that large assemblies are attainable for their future application to develop metamaterials.


Assuntos
DNA , DNA/química , Nanoestruturas/química , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Nanotecnologia/métodos
13.
Nano Lett ; 24(22): 6480-6487, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771966

RESUMO

The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.


Assuntos
DNA , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Ressonância de Plasmônio de Superfície , Análise Espectral Raman , Nanotecnologia/métodos , Tamanho da Partícula , Nanoestruturas/química , Propriedades de Superfície
14.
Nano Lett ; 24(15): 4362-4368, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38488060

RESUMO

Environmentally friendly, ultrafast display pixels of micrometer sizes are fabricated with nanometer-thick gold films and Si/SiO2 wafers. The color displayed is due to both the plasmon response of the gold film and the optical interference from the Fabry-Peerot cavity formed by the underlying silicon substrate, the semitransparent gold film and the air gap between them. When an electric potential is applied to the gold film, the electrostatic force induces an attraction between the gold film and the silicon wafer. Due to the flexibility of the film, the size of the air gap changes, resulting in a changing color. By applying different driving signals, we have achieved cyan, magenta, and yellow reflected colors. The maximum switching rate of the pixel is primarily determined by the thickness dependence of the metal drum and its Young's modulus and is typically in the MHz regime.

15.
Nano Lett ; 24(18): 5585-5592, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662652

RESUMO

Sunlight-to-electricity conversion using solar thermoelectric generators (STEGs) is a proven technology to meet our ever-growing energy demand. However, STEGs are often operated under a vacuum with customized thermoelectric materials to achieve high performance. In this work, the incorporation of plasmonic gold nanoparticle (AuNP) based solar absorbers enabled the efficient operation of STEGs under ambient conditions with commercially available thermoelectric devices. AuNPs enhanced the performance of STEG by ∼9 times, yielding an overall solar-to-electricity conversion efficiency of ∼9.6% under 7.5 W cm-2 solar irradiance at ambient conditions. Plasmonic heat dissipated by AuNPs upon solar irradiation was used as the thermal energy source for STEGs. High light absorptivity, photothermal conversion efficiency (∼95%), and thermal conductivity of AuNPs enabled the efficient generation and transfer of heat to STEGs, with minimal radiative and convective heat losses. The power generated from plasmon-powered STEGs is used to run electrical devices as well as produce green hydrogen via the electrolysis of water.

16.
Nano Lett ; 24(18): 5506-5512, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530705

RESUMO

The response of metal nanostructures to optical excitation leads to localized surface plasmon (LSP) generation with nanoscale field confinement driving applications in, for example, quantum optics and nanophotonics. Field sampling in the terahertz domain has had a tremendous impact on the ability to trace such collective excitations. Here, we extend such capabilities and introduce direct sampling of LSPs in a more relevant petahertz domain. The method allows to measure the LSP field in arbitrary nanostructures with subcycle precision. We demonstrate the technique for colloidal nanoparticles and compare the results to finite-difference time-domain calculations, which show that the build-up and dephasing of the plasmonic excitation can be resolved. Furthermore, we observe a reshaping of the spectral phase of the few-cycle pulse, and we demonstrate ad-hoc pulse shaping by tailoring the plasmonic sample. The methodology can be extended to single nanosystems and applied in exploring subcycle, attosecond phenomena.

17.
Nano Lett ; 24(25): 7800-7808, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870391

RESUMO

Metal nanoclusters feature a hierarchical structure, facilitating their ability to mimic enzyme-catalyzed reactions. However, the lack of true catalytic centers, compounded by tightly bound surface ligands hindering electron transfers to substrates, underscores the need for universal rational design methodologies to emulate the structure and mechanisms of natural enzymes. Motivated by the electron transfer in active centers with specific chemical structures, by integrating the peroxidase cofactor Fe-TCPP onto the surface of glutathione-stabilized gold nanoclusters (AuSG), we engineered AuSG-Fe-TCPP clusterzymes with a remarkable 39.6-fold enhancement in peroxidase-like activity compared to AuSG. Fe-TCPP not only mimics the active center structure, enhancing affinity to H2O2, but also facilitates the electron transfer process, enabling efficient H2O2 activation. By exemplifying the establishment of a detecting platform for trace H2O2 produced by ultrasonic cleaners, we substantiate that the bioinspired surface-ligand-engineered electron transfer can improve sensing performance with a wider linear range and lower detection limit.


Assuntos
Ouro , Peróxido de Hidrogênio , Nanopartículas Metálicas , Ouro/química , Peróxido de Hidrogênio/química , Transporte de Elétrons , Ligantes , Catálise , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Glutationa/química
18.
Nano Lett ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747634

RESUMO

Structural parameters play a crucial role in determining the electromagnetic and thermal responses of gold nanoconstructs (GNCs) at near-infrared (NIR) wavelengths. Therefore, developing GNCs for reliable, high-contrast photoacoustic imaging has been focused on adjusting structural parameters to achieve robust NIR light absorption with photostability. In this study, we introduce an efficient photoacoustic imaging contrast agent: gold sphere chains (GSCs) consisting of plasmonically coupled gold nanospheres. The chain geometry results in enhanced photoacoustic signal generation originating from outstanding photothermal characteristics compared to traditional gold contrast agents, such as gold nanorods. Furthermore, the GSCs produce consistent photoacoustic signals at laser fluences within the limits set by the American National Standards Institute. The exceptional photoacoustic response of GSCs allows for high-contrast photoacoustic imaging over multiple imaging sessions. Finally, we demonstrate the utility of our GSCs for molecular photoacoustic cancer imaging, both in vitro and in vivo, through the integration of a tumor-targeting moiety.

19.
Nano Lett ; 24(23): 6997-7003, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38721805

RESUMO

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

20.
Nano Lett ; 24(15): 4528-4536, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573311

RESUMO

Enzymes in nature efficiently catalyze chiral organic molecules by elaborately tuning the geometrical arrangement of atoms in the active site. However, enantioselective oxidation of organic molecules by heterogeneous electrocatalysts is challenging because of the difficulty in controlling the asymmetric structures of the active sites on the electrodes. Here, we show that the distribution of chiral kink atoms on high-index facets can be precisely manipulated even on single gold nanoparticles; and this enabled stereoselective oxidation of hydroxyl groups on various sugar molecules. We characterized the crystallographic orientation and the density of kink atoms and investigated their specific interactions with the glucose molecule due to the geometrical structure and surface electrostatic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA