Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(17)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026738

RESUMO

On Cu(111) surface and in interaction with a single hexa-tert-butylphenylbenzene molecule-gear, the rotation of a graphene nanodisk was studied using the large-scale atomic/molecular massively parallel simulator molecular dynamics simulator. To ensure a transmission of rotation to the molecule-gear, the graphene nanodisk is functionalized on its circumference bytert-butylphenyl chemical groups. The rotational motion can be categorized underdriving, driving and overdriving regimes calculating the locking coefficient of this mechanical machinery as a function of external torque applied to the nanodisk. The rotational friction with the surface of both the phononic and electronic contributions is investigated. For small size graphene nanodisks, the phononic friction is the main contribution. Electronic friction dominates for the larger disks putting constrains on the experimental way of achieving the transfer of rotation from a graphene nanodisk to a single molecule-gear.

2.
J Phys Condens Matter ; 34(22)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35139502

RESUMO

Quantum interference and traditional domain wall effects are two common ways to manipulate the magnetism in magnetic materials. Here, we report both effects emerge in the designed graphene nanodisks simultaneously, and thus providing an accessible way to engineer the magnetism in graphene nanostructures. By adjusting the length of the armchair edges at the corners of hexagonal disk, connecting the adjacent zigzag edges, we show that the quantum interference among the zigzag edges remains robust and consequently determines the magnetic structure in the small-size systems, in analogy with the nanoribbons. More importantly, a domain-wall-like magnetic mechanism is numerically identified to dominate the larger-size disks. In particular, a magnetic state with fully spin-polarized edges achieved in a wide parameter region promises the future applications for spintronics.

3.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867261

RESUMO

Hybrid nanoplasmonic systems can provide a promising platform of potential nonlinear applications due to the enhancement of optical fields near their surfaces in addition to the control of strong light-matter interactions they can afford. We theoretically investigated the optical multistability of a probe field that circulated along a unidirectional ring cavity containing a metal nanoparticle-graphene nanodisk-quantum dot hybrid system; the quantum dot was modeled as a three-level atomic system of Lambda configuration interacting with probe and control fields in the optical region of the electromagnetic spectrum. We show that the threshold and degree of multistability can be controlled by the geometry of the setup, the size of metal nanoparticles, the carrier mobility in the graphene nanodisk and the detunings of probe and control fields. We found that under electromagnetically-induced transparency conditions the system exhibits enhanced optical multistability with an ultralow threshold in the case of two-photon resonance with high carrier mobility in the graphene nanodisk. Moreover, we calculated the limits of the controllable parameters within which the switching between optical multistability and bistability can occur. We show that our proposed hybrid plasmonic system can be useful for efficient all-optical switches and logic-gate elements for quantum computing and quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA