Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2209964120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669111

RESUMO

Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.


Assuntos
Furões , Proteínas Hedgehog , Animais , Feminino , Humanos , Camundongos , Gravidez , Sistema Nervoso Central/metabolismo , Cílios/genética , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos Knockout , Transdução de Sinais
2.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610637

RESUMO

Many developmental disorders are thought to arise from an interaction between genetic and environmental risk factors. The Hedgehog (HH) signaling pathway regulates myriad developmental processes, and pathway inhibition is associated with birth defects, including holoprosencephaly (HPE). Cannabinoids are HH pathway inhibitors, but little is known of their effects on HH-dependent processes in mammalian embryos, and their mechanism of action is unclear. We report that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) induces two hallmark HH loss-of-function phenotypes (HPE and ventral neural tube patterning defects) in Cdon mutant mice, which have a subthreshold deficit in HH signaling. THC therefore acts as a 'conditional teratogen', dependent on a complementary but insufficient genetic insult. In vitro findings indicate that THC is a direct inhibitor of the essential HH signal transducer smoothened. The canonical THC receptor, cannabinoid receptor-type 1, is not required for THC to inhibit HH signaling. Cannabis consumption during pregnancy may contribute to a combination of risk factors underlying specific developmental disorders. These findings therefore have significant public health relevance.


Assuntos
Padronização Corporal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/toxicidade , Dronabinol/toxicidade , Holoprosencefalia/induzido quimicamente , Receptor Smoothened/metabolismo , Teratogênicos/toxicidade , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Dronabinol/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tubo Neural/efeitos dos fármacos , Tubo Neural/embriologia , Tubo Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos , Teratogênicos/farmacologia
3.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34463328

RESUMO

Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.


Assuntos
Encéfalo/embriologia , Genes Modificadores/fisiologia , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Cílios/metabolismo , Modelos Animais de Doenças , Cardiopatias Congênitas/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Mutação , Células Neuroepiteliais/metabolismo , Penetrância , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Securina/genética , Securina/metabolismo
4.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698766

RESUMO

Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Hedgehog/metabolismo , Prosencéfalo/metabolismo , Receptor Notch1/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Diferenciação Celular , Embrião de Mamíferos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/metabolismo , Humanos , Camundongos , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor Patched-1/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Prosencéfalo/embriologia , Transdução de Sinais
5.
Genet Med ; 26(4): 101059, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158857

RESUMO

PURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.


Assuntos
Processamento Alternativo , Síndromes Orofaciodigitais , Masculino , Humanos , Processamento Alternativo/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA , Íntrons , Spliceossomos/genética , Ribonucleoproteínas/genética
6.
Genet Med ; 26(7): 101126, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38529886

RESUMO

PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.


Assuntos
Alelos , Holoprosencefalia , Fenótipo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anodontia , Fenda Labial/genética , Fenda Labial/patologia , Fissura Palatina/genética , Fissura Palatina/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Heterozigoto , Holoprosencefalia/genética , Holoprosencefalia/patologia , Homozigoto , Incisivo/anormalidades , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética
7.
Am J Med Genet A ; 194(8): e63614, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38562108

RESUMO

Sonic hedgehog signaling molecule (SHH) is a key molecule in the cilia-mediated signaling pathway and a critical morphogen in embryogenesis. The association between loss-of-function variants of SHH and holoprosencephaly is well established. In mice experiments, reduced or increased signaling of SHH have been shown to be associated with narrowing or excessive expansion of the facial midline, respectively. Herein, we report two unrelated patients with de novo truncating variants of SHH presenting with hypertelorism rather than hypotelorism. The first patient was a 13-year-old girl. Her facial features included hypertelorism, strabismus, telecanthus, malocclusion, frontal bossing, and wide widow's peak. She had borderline developmental delay and agenesis of the corpus callosum. She had a nonsense variant of SHH: Chr7(GRCh38):g.155802987C > T, NM_000193.4:c.1302G > A, p.(Trp434*). The second patient was a 25-year-old girl. Her facial features included hypertelorism and wide widow's peak. She had developmental delay and agenesis of the corpus callosum. She had a frameshift variant of SHH: Chr7(GRCh38):g.155803072_155803074delCGGinsT, NM_000193.4:c.1215_1217delCCGinsA, p.(Asp405Glufs*92). The hypertelorism phenotype contrasts sharply with the prototypical hypotelorism-holoprosencephaly phenotype associated with loss-of-function of SHH. We concluded that a subset of truncating variants of SHH could be associated with hypertelorism rather than hypotelorism.


Assuntos
Proteínas Hedgehog , Holoprosencefalia , Hipertelorismo , Fenótipo , Humanos , Proteínas Hedgehog/genética , Feminino , Holoprosencefalia/genética , Holoprosencefalia/patologia , Adolescente , Hipertelorismo/genética , Hipertelorismo/patologia , Adulto , Mutação/genética
8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526656

RESUMO

Hedgehog signaling is fundamental in animal embryogenesis, and its dysregulation causes cancer and birth defects. The pathway is triggered when the Hedgehog ligand inhibits the Patched1 membrane receptor, relieving repression that Patched1 exerts on the GPCR-like protein Smoothened. While it is clear how loss-of-function Patched1 mutations cause hyperactive Hedgehog signaling and cancer, how other Patched1 mutations inhibit signaling remains unknown. Here, we develop quantitative single-cell functional assays for Patched1, which, together with mathematical modeling, indicate that Patched1 inhibits Smoothened enzymatically, operating in an ultrasensitive regime. Based on this analysis, we propose that Patched1 functions in cilia, catalyzing Smoothened deactivation by removing cholesterol bound to its extracellular, cysteine-rich domain. Patched1 mutants associated with holoprosencephaly dampen signaling by three mechanisms: reduced affinity for Hedgehog ligand, elevated catalytic activity, or elevated affinity for the Smoothened substrate. Our results clarify the enigmatic mechanism of Patched1 and explain how Patched1 mutations lead to birth defects.


Assuntos
Proteínas Hedgehog/metabolismo , Mutação/genética , Receptor Patched-1/genética , Transdução de Sinais , Regulação Alostérica , Animais , Biocatálise , Colesterol/metabolismo , Cílios/metabolismo , Holoprosencefalia/genética , Ligantes , Camundongos , Modelos Biológicos , Receptor Patched-1/metabolismo , Fenótipo , Domínios Proteicos , Receptor Smoothened/química , Receptor Smoothened/metabolismo
9.
Am J Hum Genet ; 106(1): 121-128, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883643

RESUMO

In two independent ongoing next-generation sequencing projects for individuals with holoprosencephaly and individuals with disorders of sex development, and through international research collaboration, we identified twelve individuals with de novo loss-of-function (LoF) variants in protein phosphatase 1, regulatory subunit 12a (PPP1R12A), an important developmental gene involved in cell migration, adhesion, and morphogenesis. This gene has not been previously reported in association with human disease, and it has intolerance to LoF as illustrated by a very low observed-to-expected ratio of LoF variants in gnomAD. Of the twelve individuals, midline brain malformations were found in five, urogenital anomalies in nine, and a combination of both phenotypes in two. Other congenital anomalies identified included omphalocele, jejunal, and ileal atresia with aberrant mesenteric blood supply, and syndactyly. Six individuals had stop gain variants, five had a deletion or duplication resulting in a frameshift, and one had a canonical splice acceptor site loss. Murine and human in situ hybridization and immunostaining revealed PPP1R12A expression in the prosencephalic neural folds and protein localization in the lower urinary tract at critical periods for forebrain division and urogenital development. Based on these clinical and molecular findings, we propose the association of PPP1R12A pathogenic variants with a congenital malformations syndrome affecting the embryogenesis of the brain and genitourinary systems and including disorders of sex development.


Assuntos
Anormalidades Múltiplas/patologia , Transtornos do Desenvolvimento Sexual/patologia , Holoprosencefalia/patologia , Mutação , Fosfatase de Miosina-de-Cadeia-Leve/genética , Anormalidades Urogenitais/patologia , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Transtornos do Desenvolvimento Sexual/genética , Feminino , Idade Gestacional , Holoprosencefalia/genética , Humanos , Masculino , Fenótipo , Gravidez , Anormalidades Urogenitais/genética
10.
Development ; 147(21)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680836

RESUMO

Developmental biologists rely on genetics-based approaches to understand the origins of congenital abnormalities. Recent advancements in genomics have made it easier than ever to investigate the relationship between genes and disease. However, nonsyndromic birth defects often exhibit non-Mendelian inheritance, incomplete penetrance or variable expressivity. The discordance between genotype and phenotype indicates that extrinsic factors frequently impact the severity of genetic disorders and vice versa. Overlooking gene-environment interactions in birth defect etiology limits our ability to identify and eliminate avoidable risks. We present mouse models of sonic hedgehog signaling and craniofacial malformations to illustrate both the importance of and current challenges in resolving gene-environment interactions in birth defects. We then prescribe approaches for overcoming these challenges, including use of genetically tractable and environmentally responsive in vitro systems. Combining emerging technologies with molecular genetics and traditional animal models promises to advance our understanding of birth defect etiology and improve the identification and protection of vulnerable populations.


Assuntos
Anormalidades Congênitas/etiologia , Anormalidades Congênitas/genética , Interação Gene-Ambiente , Animais , Anormalidades Craniofaciais/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Transdução de Sinais/genética
11.
Development ; 147(23)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33060130

RESUMO

The Hedgehog (HH) pathway controls multiple aspects of craniofacial development. HH ligands signal through the canonical receptor PTCH1, and three co-receptors: GAS1, CDON and BOC. Together, these co-receptors are required during embryogenesis to mediate proper HH signaling. Here, we investigated the individual and combined contributions of GAS1, CDON and BOC to HH-dependent mammalian craniofacial development. Notably, individual deletion of either Gas1 or Cdon results in variable holoprosencephaly phenotypes in mice, even on a congenic background. In contrast, we find that Boc deletion results in facial widening that correlates with increased HH target gene expression. In addition, Boc deletion in a Gas1 null background partially ameliorates the craniofacial defects observed in Gas1 single mutants; a phenotype that persists over developmental time, resulting in significant improvements to a subset of craniofacial structures. This contrasts with HH-dependent phenotypes in other tissues that significantly worsen following combined deletion of Gas1 and Boc Together, these data indicate that BOC acts as a multi-functional regulator of HH signaling during craniofacial development, alternately promoting or restraining HH pathway activity in a tissue-specific fashion.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular/genética , Desenvolvimento Embrionário/genética , Imunoglobulina G/genética , Receptores de Superfície Celular/genética , Animais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Proteínas Ligadas por GPI/genética , Deleção de Genes , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Holoprosencefalia/patologia , Humanos , Camundongos , Receptor Patched-1/genética , Transdução de Sinais/genética
12.
Am J Med Genet A ; 191(2): 640-646, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331276

RESUMO

It is here argued that the application of the term "minor anomalies" is often imprecise and likely outdated. In the past, the designation was used indiscriminately to refer to a great variety of unrelated morphogenetic phenomena. Also, the term does not discriminate between mild qualitative defects of development (mild malformations) and quantitative variants of normal structure. The human face was formed by natural and sexual selection. Morphological and morphogenetic analyses have shown that the human face with its skin, muscles, nerves, arteries, veins, glands, and lymphatics is a complex structure made up of progeny of ectoderm and mesoderm. Holoprosencephaly demonstrates graphically how these embryonic derivatives fit together sequentially. These derivatives are the adaptive units of the human organism, the result of stringent evolutionary forces uniting essential function to a minimum of structure. Before an "unusual" facial appearance is diagnosed as "abnormal", phenotype analysis is required to determine if there is a family resemblance or if it is a pleiotropic structure. The facial structures of chimps and humans are homologous by virtue of descent from a common ancestor (Darwin, 1859). Differences in the appearance of these species reflect adaptive divergence over some 6-7 million years of evolution while retaining over 98-99% genetic identity. Both species may develop Down syndrome, evidence of similarly retained developmental plasticity. It has occurred to us that Dobzhansky's axiom ("Nothing in biology makes sense except in the light of evolution") applies not only to genetics, but to all of medicine.


Assuntos
Holoprosencefalia , Humanos , Ectoderma , Evolução Biológica
13.
J Med Genet ; 59(3): 262-269, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33397746

RESUMO

BACKGROUND: Next-generation sequencing, combined with international pooling of cases, has impressively enhanced the discovery of genes responsible for Mendelian neurodevelopmental disorders, particularly in individuals affected by clinically undiagnosed diseases. To date, biallelic missense variants in ZNF526 gene, encoding a Krüppel-type zinc-finger protein, have been reported in three families with non-syndromic intellectual disability. METHODS: Here, we describe five individuals from four unrelated families with an undiagnosed neurodevelopmental disorder in which we performed exome sequencing, on a combination of trio-based (4 subjects) or single probands (1 subject). RESULTS: We identified five patients from four unrelated families with homozygous ZNF526 variants by whole exome sequencing. Four had variants resulting in truncation of ZNF526; they were affected by severe prenatal and postnatal microcephaly (ranging from -4 SD to -8 SD), profound psychomotor delay, hypertonic-dystonic movements, epilepsy and simplified gyral pattern on MRI. All of them also displayed bilateral progressive cataracts. A fifth patient had a homozygous missense variant and a slightly less severe disorder, with postnatal microcephaly (-2 SD), progressive bilateral cataracts, severe intellectual disability and unremarkable brain MRI.Mutant znf526 zebrafish larvae had notable malformations of the eye and central nervous system, resembling findings seen in the human holoprosencephaly spectrum. CONCLUSION: Our findings support the role of ZNF526 biallelic variants in a complex neurodevelopmental disorder, primarily affecting brain and eyes, resulting in severe microcephaly, simplified gyral pattern, epileptic encephalopathy and bilateral cataracts.


Assuntos
Catarata , Epilepsia , Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Humanos , Catarata/genética , Epilepsia/genética , Deficiência Intelectual/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Peixe-Zebra/genética
14.
Childs Nerv Syst ; 39(9): 2537-2541, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231270

RESUMO

BACKGROUND: Severe macrocephaly can still be found in developing countries. This condition is usually caused by neglected hydrocephalus and can cause a lot of morbidities. Cranial vault reconstruction cranioplasty is the main treatment option for severe macrocephaly. Holoprosencephaly is often seen with features of microcephaly. Hydrocephalus should be considered as the main cause in HPE patients with features of macrocephaly. In this report, we present a rare case of cranial vault reduction cranioplasty procedure in patient with severe macrocephaly due to holoprosencephaly and subdural hygroma. CASE DESCRIPTION: A 4-year-10-month-old Indonesian boy was admitted with head enlargement since birth. He had a history of VP shunt placement when he was 3 months old. But the condition was neglected. Preoperative head CT showed massive bilateral subdural hygroma that compressed brain parenchyma caudally. From the craniometric calculation, the occipital frontal circumference was 70.5 cm with prominent vertex expansion, the distance between nasion to inion was 11.91 cm and the vertical height was 25.59 cm. The preoperative cranial volume was 24.611 cc. The patient underwent subdural hygroma evacuation and cranial vault reduction cranioplasty. The postoperative cranial volume was 10.468 cc. CONCLUSION: Subdural hygroma can be a rare cause of severe macrocephaly in holoprosencephaly patients. Cranial vault reduction cranioplasty and subdural hygroma evacuation is still the main treatment option. Our procedure successfully reduces significant cranial volume (57.46% volume reduction).


Assuntos
Holoprosencefalia , Hidrocefalia , Megalencefalia , Derrame Subdural , Masculino , Humanos , Lactente , Holoprosencefalia/complicações , Derrame Subdural/etiologia , Crânio/diagnóstico por imagem , Crânio/cirurgia , Megalencefalia/complicações , Megalencefalia/diagnóstico por imagem , Megalencefalia/cirurgia , Hidrocefalia/cirurgia
15.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175759

RESUMO

Vision is likely our most prominent sense and a correct development of the eye is at its basis. Early eye development is tightly connected to the development of the forebrain. A single eye field and the prospective telencephalon are situated within the anterior neural plate (ANP). During normal development, both domains are split and consecutively, two optic vesicles and two telencephalic lobes emerge. If this process is hampered, the domains remain condensed at the midline. The resulting developmental disorder is termed holoprosencephaly (HPE). The typical ocular finding associated with intense forms of HPE is cyclopia. However, also anophthalmia and coloboma can be associated with HPE. Here, we report that a correct balance of Bone morphogenetic proteins (BMPs) and their antagonists are important for forebrain and eye field cleavage. Experimental induction of a BMP ligand results in a severe form of HPE showing anophthalmia. We identified a dysmorphic forebrain containing retinal progenitors, which we termed crypt-oculoid. Optic vesicle evagination is impaired due to a loss of rx3 and, consecutively, of cxcr4a. Our data further suggest that the subduction of prospective hypothalamic cells during neurulation and neural keel formation is affected by the induction of a BMP ligand.


Assuntos
Anoftalmia , Proteínas Morfogenéticas Ósseas , Holoprosencefalia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ligantes , Estudos Prospectivos , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo
16.
Balkan J Med Genet ; 25(2): 71-76, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37265970

RESUMO

Holoprosencephaly (HPE) is the most common embryonic forebrain developmental anomaly. It involves incomplete or absent division of the prosencephalon into two distinct cerebral hemispheres during the early stages of organogenesis. HPE is etiologically heterogeneous, and its clinical presentation is very variable. We report a case of a 7 month old female infant, diagnosed with non-syndromic semilobar holoprosencephaly, caused by a novel, de novo pathogenic variant in ZIC2 - one of the most commonly mutated genes in non-syndromic HPE coding for the ZIC2 transcription factor. The patient presented with microcephaly, mild facial dysmorphic features, central hypotonia and spasticity on all four extremities. Ultrasound imaging demonstrated the absence of septum pellucidum, semilobar fusion of the hemispheres and mega cisterna magna and brain MRI with confirmed the diagnosis of HPE. Early diagnosis and management are important for the prevention and treatment of complications associated with this condition.

17.
Am J Hum Genet ; 104(5): 990-993, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006510

RESUMO

Holoprosencephaly is the incomplete separation of the forebrain during embryogenesis. Both genetic and environmental etiologies have been determined for holoprosencephaly; however, a genetic etiology is not found in most cases. In this report, we present two unrelated individuals with semilobar holoprosencephaly who have the identical de novo missense variant in the gene CCR4-NOT transcription complex, subunit 1 (CNOT1). The variant (c.1603C>T [p.Arg535Cys]) is predicted to be deleterious and is not present in public databases. CNOT1 has not been previously associated with holoprosencephaly or other brain malformations. In situ hybridization analyses of mouse embryos show that Cnot1 is expressed in the prosencephalic neural folds at gestational day 8.25 during the critical period for subsequent forebrain division. Combining human and mouse data, we show that CNOT1 is associated with incomplete forebrain division.


Assuntos
Holoprosencefalia/genética , Holoprosencefalia/patologia , Mutação de Sentido Incorreto , Prosencéfalo/anormalidades , Fatores de Transcrição/genética , Animais , Criança , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Prosencéfalo/metabolismo
18.
Am J Med Genet A ; 188(4): 1065-1074, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921505

RESUMO

Variants in transcription factor GLI2 have been associated with hypopituitarism and structural brain abnormalities, occasionally including holoprosencephaly (HPE). Substantial phenotypic variability and nonpenetrance have been described, posing difficulties in the counseling of affected families. We present three individuals with novel likely pathogenic GLI2 variants, two with truncating and one with a de novo missense variant p.(Ser548Leu), and review the literature for comprehensive phenotypic descriptions of individuals with confirmed pathogenic (a) intragenic GLI2 variants and (b) chromosome 2q14.2 deletions encompassing only GLI2. We show that most of the 31 missense variants previously reported as pathogenic are likely benign or, at most, low-risk variants. Four Zn-finger variants: p.(Arg479Gly), p.(Arg516Pro), p.(Gly518Lys), and p.(Tyr575His) were classified as likely pathogenic, and three other variants as possibly pathogenic: p.(Pro253Ser), p.(Ala593Val), and p.(Pro1243Leu). We analyze the phenotypic descriptions of 60 individuals with pathogenic GLI2 variants and evidence a morbidity spectrum that includes hypopituitarism (58%), HPE (6%) or other brain structure abnormalities (15%), orofacial clefting (17%) and dysmorphic facial features (35%). We establish that truncating and Zn-finger variants in GLI2 are associated with a high risk of hypopituitarism, and that a solitary median maxillary central incisor is part of the GLI2-related phenotypic variability. The most prevalent phenotypic feature is post-axial polydactyly (65%) which is also the mildest phenotypic expression of the condition, reported in many parents of individuals with systemic findings. Our approach clarifies clinical risks and the important messages to discuss in counseling for a pathogenic GLI2 variant.


Assuntos
Holoprosencefalia , Hipopituitarismo , Holoprosencefalia/genética , Humanos , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Mutação , Proteínas Nucleares/genética , Fenótipo , Zinco , Proteína Gli2 com Dedos de Zinco/genética
19.
BMC Neurol ; 22(1): 316, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008788

RESUMO

BACKGROUND: Sinus pericranii is a rare cranial venous malformation resulting in a subcutaneous mass due to abnormal communication between intracranial and subperiosteal/interperiosteal veins. To date, to the best of our knowledge, there are no reports of sinus pericranii associated with syntelencephaly, a subtype of lobar holoprosencephaly. We herein report a case of sinus pericranii associated with syntelencephaly. This report can provide us better understanding of the etiology of sinus pericranii, the potential risks, and the treatment options for these patients. CASE PRESENTATION: A 2-year-4-month old female patient who received the diagnosis of syntelencephaly as a neonate presented with a subcutaneous mass in the parietal region. The mass was soft, nonpulsatile, 3 × 2 cm in size, and showed enlargement in the lying position. Color cranial Doppler ultrasound, head magnetic resonance imaging (MRI), and cerebral angiography revealed a dilated vessel passing through the parietal bone and forming a communication between the superior sagittal sinus and scalp veins. Based on these findings, sinus pericranii was diagnosed. The head MRI also showed coronal craniosynostosis, a tight posterior fossa. At age 2 years and 7 months, the patient underwent a transection of the sinus pericranii and the mass resolved without any complications or recurrences for more than 2.5 years to date. CONCLUSION: Sinus pericranii is a rare cranial and venous malformation sometimes accompanied by brain malformations or craniosynostosis that may become more apparent as the brain and skull develop. Since this condition can be complicated by intracranial hemorrhage and sinus thrombosis, early detection is necessary to determine the treatment options. Physicians should be alert to the possibility of this condition if they observe a soft cranial mass that appears to decrease in size in the sitting position and bulge in the lying position.


Assuntos
Craniossinostoses , Holoprosencefalia , Seio Pericrânio , Angiografia Cerebral , Pré-Escolar , Craniossinostoses/complicações , Feminino , Holoprosencefalia/complicações , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Seio Pericrânio/complicações , Seio Pericrânio/diagnóstico por imagem
20.
Pediatr Dev Pathol ; 25(5): 548-552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481434

RESUMO

Holoprosencephaly (HPE) is a clinically and genetically heterogeneous disease, which can be associated with various prenatal comorbidities not always detectable on prenatal ultrasound. We report on the case of a foetus carrying a semi-lobar HPE diagnosed at ultrasound, for which a fetal autopsy and a whole exome sequencing were performed following a medical termination of pregnancy. Neuropathological examination confirmed the semi-lobar HPE and general autopsy disclosed a total pancreas agenesis. Whole exome sequencing found the CNOT1 missense c.1603C>T, p.(Arg535Cys), occurring de novo in the foetus. The same variant was previously reported in 5 unrelated children. All individuals had HPE, and 4 out of 5 presented endo- and exocrine pancreatic insufficiency or total pancreas agenesis. CNOT1 encodes a subunit of the CCRN4-NOT complex, expressed at the early stage of embryonic development. This report is the first fetal description of the phenotype associating HPE and pancreatic agenesis linked to the recurrent CNOT1 missense c.1603C>T, p.(Arg535Cys). This finding strengthens the hypothesis of a specific recurrent variant associated with a particular phenotype of HPE and pancreas agenesis. The fetal autopsy that revealed the pancreas agenesis was crucial in guiding the genetic diagnosis and enabling accurate genetic counselling.


Assuntos
Holoprosencefalia , Feminino , Feto/patologia , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Holoprosencefalia/patologia , Humanos , Fenótipo , Gravidez , Síndrome , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA