Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(27): e2301549120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364114

RESUMO

Modern infectious disease outbreaks often involve changes in host tropism, the preferential adaptation of pathogens to specific hosts. The Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the molecular mechanisms of host tropism, because different variants of these tick-transmitted bacteria are distinctly maintained in rodents or bird reservoir hosts. To survive in hosts and escape complement-mediated immune clearance, Bb produces the outer surface protein CspZ that binds the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants differ in human FH-binding ability. Together with the FH polymorphisms between vertebrate hosts, these findings suggest that minor sequence variation in this bacterial outer surface protein may confer dramatic differences in host-specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, and identifying minor variation localized in the FH-binding interface yielding bird and rodent FH-specific binding activity that impacts infectivity. Swapping the divergent region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. We further linked these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ phylogenetic lineages, elucidating evolutionary mechanisms driving host tropism emergence. Our multidisciplinary work provides a novel molecular basis for how a single, short protein motif could greatly modulate pathogen host tropism.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Humanos , Evasão da Resposta Imune/genética , Filogenia , Tropismo Viral , Doença de Lyme/microbiologia , Proteínas de Bactérias/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Proteínas do Sistema Complemento/genética , Proteínas de Membrana/metabolismo
2.
Emerg Infect Dis ; 30(9): 1907-1911, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127127

RESUMO

An outbreak of influenza A (H5N1) virus was detected in dairy cows in the United States. We detected influenza A virus sialic acid -α2,3/α2,6-galactose host receptors in bovine mammary glands by lectin histochemistry. Our results provide a rationale for the high levels of H5N1 virus in milk from infected cows.


Assuntos
Glândulas Mamárias Animais , Infecções por Orthomyxoviridae , Receptores Virais , Animais , Bovinos , Glândulas Mamárias Animais/virologia , Feminino , Receptores Virais/metabolismo , Humanos , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Virus da Influenza A Subtipo H5N1 , Doenças dos Bovinos/virologia , Influenza Humana/virologia , Leite/virologia , Receptores de Superfície Celular/metabolismo , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Aves/virologia
3.
Annu Rev Genet ; 49: 21-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407032

RESUMO

Infectious diseases are the second leading cause of death worldwide. Although the host multitropism of some pathogens has rendered their manipulation possible in animal models, the human-restricted tropism of numerous viruses, bacteria, fungi, and parasites has seriously hampered our understanding of these pathogens. Hence, uncovering the genetic basis underlying the narrow tropism of such pathogens is critical for understanding their mechanisms of infection and pathogenesis. Moreover, such genetic dissection is essential for the generation of permissive animal models that can serve as critical tools for the development of therapeutics or vaccines against challenging human pathogens. In this review, we describe different experimental approaches utilized to uncover the genetic foundation regulating pathogen host tropism as well as their relevance for studying the tropism of several important human pathogens. Finally, we discuss the current and future uses of this knowledge for generating genetically modified animal models permissive for these pathogens.


Assuntos
Perfilação da Expressão Gênica/métodos , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Adaptação Fisiológica/genética , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Engenharia Genética/métodos , Haploidia , Humanos , Camundongos Transgênicos , Tropismo
4.
J Virol ; 96(19): e0134422, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125302

RESUMO

Subtype H7 avian influenza A viruses (IAVs) are enzootic in wild aquatic birds and have caused sporadic spillovers into domestic poultry and humans. Here, we determined the distribution of fucosylated α2,3 sialoglycan (i.e., sialyl Lewis X [SLeX]) in chickens and five common dabbling duck species and the association between SLeX and cell/tissue/host tropisms of H7 IAVs. Receptor binding analyses showed that H7 IAVs bind to both α2,3-linked (SA2,3Gal) and α2,6-linked sialic acids (SA2,6Gal), but with a higher preference for SLeX; H7 IAVs replicated more efficiently in SLeX-overexpressed than SLeX-deficient MDCK cells. While chickens and all tested dabbling ducks expressed abundant SA2,3Gal and SA2,6Gal, SLeX was detected in both respiratory and gastrointestinal tissues of chickens and mallard ducks and in only the respiratory tissues of gadwall, green-wing teal, and northern shoveler but not in wood ducks. Viral-tissue binding assays showed that H7 IAVs bind to chicken colon crypt cells that express SLeX but fewer bind to mallard colon crypt cells, which do not express SLeX; H7 IAVs bind efficiently to epithelial cells of all tissues expressing SA2,3Gal. High viral replication was identified in both chickens and mallards infected with an H7 virus, regardless of SLeX expression, and viruses were detected in all cells to the same degree as viruses detected in the viral-tissue binding assays. In summary, this study suggests that SLeX facilitates infection of H7 viruses, but other types of SA2,3Gal glycan receptors shape the tissue/host tropisms of H7 IAVs. IMPORTANCE In addition to causing outbreaks in domestic poultry, subtype H7 IAVs can cause sporadic spillover infections in lower mammals and humans. In this study, we showed that SLeX expression varies among wild dabbling ducks. Although it facilitated virus binding and affected infection of H7 IAV in cells, SLeX expression is not the only determinant of viral replication at either the tissue or host level. This study suggested that access to heterologous SA2,3Gal glycan receptors, including fucosylated α2,3-linked sialoglycans, shape tissue and host tropism of H7 IAVs in aquatic wild birds.


Assuntos
Vírus da Influenza A , Influenza Aviária , Antígeno Sialil Lewis X , Tropismo Viral , Animais , Animais Selvagens/virologia , Galinhas/virologia , Cães , Patos/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Polissacarídeos , Ácidos Siálicos , Antígeno Sialil Lewis X/metabolismo
5.
Glycobiology ; 32(9): 791-802, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35648131

RESUMO

Sialic acids are used as a receptor by several viruses and variations in the linkage type or C-5 modifications affect the binding properties. A species barrier for multiple viruses is present due to α2,3- or α2,6-linked sialic acids. The C-5 position of the sialic acid can be modified to form N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc), which acts as a determinant for host susceptibility for pathogens such as influenza A virus, rotavirus, and transmissible gastroenteritis coronavirus. Neu5Gc is present in most mammals such as pigs and horses but is absent in humans, ferrets, and dogs. However, little is known about C-5 content in wildlife species or how many C-5 modified sialic acids are present on N-linked glycans or glycolipids. Using our previously developed tissue microarray system, we investigated how 2 different lectins specific for Neu5Gc can result in varying detection levels of Neu5Gc glycans. We used these lectins to map Neu5Gc content in wild Suidae, Cervidae, tigers, and European hedgehogs. We show that Neu5Gc content is highly variable among different species. Furthermore, the removal of N-linked glycans reduces the binding of both Neu5Gc lectins while retention of glycolipids by omitting methanol treatment of tissues increases lectin binding. These findings highlight the importance of using multiple Neu5Gc lectins as the rich variety in which Neu5Gc is displayed can hardly be detected by a single lectin.


Assuntos
Ácidos Siálicos , Vírus , Animais , Animais Domésticos/metabolismo , Cães , Furões/metabolismo , Glicolipídeos , Cavalos , Humanos , Lectinas , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos , Polissacarídeos , Ácidos Siálicos/metabolismo , Suínos
6.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33115870

RESUMO

Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/virologia , Modelos Animais de Doenças , Gastroenterite/virologia , Mucosa Intestinal/virologia , Norovirus/fisiologia , Ligação Viral , Sequência de Aminoácidos , Animais , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/patologia , Fezes/virologia , Gastroenterite/metabolismo , Gastroenterite/patologia , Humanos , Mucosa Intestinal/metabolismo , Homologia de Sequência
7.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568504

RESUMO

Pestiviruses such as bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) belong to the family Flaviviridae and represent pathogens of outstanding veterinary relevance. Pestiviruses enter cells via receptor-mediated endocytosis. For entry in bovine cells, complement regulatory protein CD46bov serves as a cellular receptor for BVDV. In this study, the role of porcine CD46pig in cellular entry was investigated for the recently discovered atypical porcine pestivirus (APPV), CSFV, and Bungowannah virus (BuPV) in order to elucidate the observed differences in host cell tropism. A cell culture-adapted APPV variant, which shows enhanced viral replication in vitro, was generated and demonstrated a strict tropism of APPV for porcine cells. One of the porcine cell lines displayed areas of CD46pig-expressing cells and areas of nonexpressing cells, and one single cell line revealed not to express any CD46pig The CD46pig-deficient porcine lymphoma cell line, known to facilitate CSFV replication, was the only porcine cell line nonpermissive to APPV, indicating a significant difference in the entry mechanism of APPV and CSFV. Infection experiments with a set of genetically engineered CD46pig knockout cells confirmed that CD46pig is a major receptor of APPV as CD46bov is for BVDV. In contrast, it is apparently not an essential determinant in host cell entry of other porcine pestiviruses such as CSFV and BuPV. Existence of a CD46pig-independent entry mechanism illustrates that the pestiviral entry process is more diverse than previously recognized.IMPORTANCE Pestiviruses comprise animal pathogens such as classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV) that cause notifiable diseases with great economic impact. Several additional pestivirus species affecting animal health were recently identified, including atypical porcine pestivirus (APPV). APPV is associated with health problems in piglets and is highly abundant in pig populations worldwide. Complement control protein CD46 serves as a receptor for diverse bacterial and viral pathogens, including particular adenoviruses, herpesviruses, measles virus (MeV), and BVDV. Porcine CD46 (CD46pig) was suggested to be a major receptor for CSFV. Here, we identified remarkable differences in relevance of CD46pig during entry of porcine pestiviruses. Resembling BVDV, efficient APPV infection in cell culture depends on CD46pig, while other porcine pestiviruses can efficiently enter and infect cells in the absence of CD46pig Thus, the study provides insights into the entry process of these pathogens and may help to understand differences in their biology.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/virologia , Proteína Cofatora de Membrana/fisiologia , Receptores Virais/fisiologia , Tropismo Viral , Internalização do Vírus , Animais , Linhagem Celular , Proteína Cofatora de Membrana/imunologia , Suínos
8.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967956

RESUMO

Wild aquatic birds maintain a large, genetically diverse pool of influenza A viruses (IAVs), which can be transmitted to lower mammals and, ultimately, humans. Through phenotypic analyses of viral replication efficiency, only a small set of avian IAVs were found to replicate well in epithelial cells of the swine upper respiratory tract, and these viruses were shown to infect and cause virus shedding in pigs. Such a phenotypic trait of the viral replication efficiency appears to emerge randomly and is distributed among IAVs across multiple avian species and geographic and temporal orders. It is not determined by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. This study demonstrates that phenotypic variants of viral replication efficiency exist among avian IAVs but that only a few of these may result in viral shedding in pigs upon infection, providing opportunities for these viruses to become adapted to pigs, thus posing a higher potential risk for creating novel variants or detrimental reassortants within pig populations.IMPORTANCE Swine serve as a mixing vessel for generating pandemic strains of human influenza virus. All hemagglutinin subtypes of IAVs can infect swine; however, only sporadic cases of infection with avian IAVs are reported in domestic swine. The molecular mechanisms affecting the ability of avian IAVs to infect swine are still not fully understood. From the findings of phenotypic analyses, this study suggests that the tissue tropisms (i.e., in swine upper respiratory tracts) of avian IAVs affect their spillovers from wild birds to pigs. It was found that this phenotype is determined not by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. In addition, our results show that such a phenotypic trait was sporadically and randomly distributed among IAVs across multiple avian species and geographic and temporal orders. This study suggests an efficient way for assessment of the risk posed by avian IAVs, such as in evaluating their potentials to be transmitted from birds to pigs.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Vírus da Influenza A/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Tropismo , Animais , Linhagem Celular , Células Epiteliais/virologia , Células HEK293 , Hemaglutininas , Humanos , Vírus da Influenza A/crescimento & desenvolvimento , Pandemias , Filogenia , Sistema Respiratório/virologia , Suínos , Replicação Viral , Eliminação de Partículas Virais
9.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043530

RESUMO

The recent yellow fever virus (YFV) epidemic in Brazil in 2017 and Zika virus (ZIKV) epidemic in 2015 serve to remind us of the importance of flaviviruses as emerging human pathogens. With the current global flavivirus threat, there is an urgent need for antivirals and vaccines to curb the spread of these viruses. However, the lack of suitable animal models limits the research questions that can be answered. A common trait of all flaviviruses studied thus far is their ability to antagonize interferon (IFN) signaling so as to enhance viral replication and dissemination. Previously, we reported that YFV NS5 requires the presence of type I IFN (IFN-α/ß) for its engagement with human signal transducer and activator of transcription 2 (hSTAT2). In this manuscript, we report that like the NS5 proteins of ZIKV and dengue virus (DENV), YFV NS5 protein is able to bind hSTAT2 but not murine STAT2 (mSTAT2). Contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, replacing mSTAT2 with hSTAT2 cannot rescue the YFV NS5-STAT2 interaction, as YFV NS5 is also unable to interact with hSTAT2 in murine cells. We show that the IFN-α/ß-dependent ubiquitination of YFV NS5 that is required for STAT2 binding in human cells is absent in murine cells. In addition, we demonstrate that mSTAT2 restricts YFV replication in vivo These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses.IMPORTANCE Flaviviruses such as yellow fever virus (YFV), Zika virus (ZIKV), and dengue virus (DENV) are important human pathogens. A common flavivirus trait is the antagonism of interferon (IFN) signaling to enhance viral replication and spread. We report that like ZIKV NS5 and DENV NS5, YFV NS5 binds human STAT2 (hSTAT2) but not mouse STAT2 (mSTAT2), a type I IFN (IFN-α/ß) pathway component. Additionally, we show that contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, YFV NS5 is unable to interact with hSTAT2 in murine cells. We demonstrate that mSTAT2 restricts YFV replication in mice and that this correlates with a lack of IFN-α/ß-induced YFV NS5 ubiquitination in murine cells. The lack of suitable animal models limits flavivirus pathogenesis, vaccine, and drug research. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses.


Assuntos
Fator de Transcrição STAT2/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Tropismo Viral , Vírus da Febre Amarela/fisiologia , Animais , Células HEK293 , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Camundongos Knockout , Fator de Transcrição STAT2/genética , Proteínas não Estruturais Virais/genética , Zika virus/genética , Zika virus/metabolismo
10.
J Med Virol ; 92(12): 3563-3571, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32589758

RESUMO

Hepatitis E virus (HEV) infects humans and more than a dozen other animal species. We previously showed that open reading frame 2 (ORF2) and ORF3 are apparently not involved in HEV cross-species infection, which infers that the ORF1 may contribute to host tropism. In this study, we utilize the genomic backbone of HEV-1 which only infects humans to construct a panel of intergenotypic chimeras in which the entire ORF1 gene or its functional domains were swapped with the corresponding regions from HEV-3 that infects both humans and pigs. We demonstrated that the chimeric HEVs were replication competent in human liver cells. Subsequently, we intrahepatically inoculated the RNA transcripts of chimeras into pigs to determine if the swapped ORF1 regions confer the chimeras' ability to infect pigs. We showed that there was no evidence of infectivity in pigs for any of the chimeras. We also investigated the role of human ribosome protein sequence S17, which expanded host range in cultured cells, in HEV cross-species infection. We demonstrated that S17 insertion in HEV ORF1 did not abolish HEV replication competency in vitro, but also did not expand HEV host tropism in vivo. The results highlight the complexity of the underlying mechanism of HEV cross-species infection.

11.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485887

RESUMO

The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.


Assuntos
Modelos Animais de Doenças , Hepacivirus/fisiologia , Hepatite C/virologia , Animais , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/patologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Primatas
12.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997206

RESUMO

An outbreak of respiratory disease caused by the equine-origin influenza A(H3N8) virus was first detected in dogs in 2004 and since then has been enzootic among dogs. Currently, the molecular mechanisms underlying host adaption of this virus from horses to dogs is unknown. Here, we have applied quantitative binding, growth kinetics, and immunofluorescence analyses to elucidate these mechanisms. Our findings suggest that a substitution of W222L in the hemagglutinin of the equine-origin A(H3N8) virus facilitated its host adaption to dogs. This mutation increased binding avidity of the virus specifically to receptor glycans with N-glycolylneuraminic acid (Neu5Gc) and sialyl Lewis X (SLeX) motifs. We have demonstrated these motifs are abundantly located in the submucosal glands of dog trachea. Our findings also suggest that in addition to the type of glycosidic linkage (e.g., α2,3-linkage or α2,6-linkage), the type of sialic acid (Neu5Gc or 5-N-acetyl neuraminic acid) and the glycan substructure (e.g., SLeX) also play an important role in host tropism of influenza A viruses.IMPORTANCE Influenza A viruses (IAVs) cause a significant burden on human and animal health, and mechanisms for interspecies transmission of IAVs are far from being understood. Findings from this study suggest that an equine-origin A(H3N8) IAV with mutation W222L at its hemagglutinin increased binding to canine-specific receptors with sialyl Lewis X and Neu5Gc motifs and, thereby, may have facilitated viral adaption from horses to dogs. These findings suggest that in addition to the glycosidic linkage (e.g., α2,3-linked and α2,6-linked), the substructure in the receptor saccharides (e.g., sialyl Lewis X and Neu5Gc) could present an interspecies transmission barrier for IAVs and drive viral mutations to overcome such barriers.


Assuntos
Hemaglutininas/genética , Especificidade de Hospedeiro , Vírus da Influenza A Subtipo H3N8/genética , Mutação , Receptores Virais/genética , Animais , Sítios de Ligação , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Cavalos , Vírus da Influenza A Subtipo H3N8/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N8/metabolismo , Cinética , Ácidos Neuramínicos/análise , Oligossacarídeos/análise , Infecções por Orthomyxoviridae/virologia , Ligação Proteica , Receptores Virais/metabolismo , Antígeno Sialil Lewis X , Traqueia/química , Traqueia/virologia , Tropismo Viral , Ligação Viral
13.
BMC Microbiol ; 17(1): 88, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381209

RESUMO

BACKGROUND: Critical to the development of Salmonellosis in humans is the interaction of the bacterium with the epithelial lining of the gastrointestinal tract. Traditional scientific reasoning held type III secretion system (T3SS) as the virulence factor responsible for bacterial invasion. In this study, field-isolated Salmonella enterica serovar Kentucky and a known human pathogen Salmonella enterica serovar Typhimurium were mutated and evaluated for the invasion of human colorectal adenocarcinoma epithelial cells. RESULTS: S. enterica serovar Kentucky was shown to actively invade a eukaryotic monolayer, though at a rate that was significantly lower than Typhimurium. Additionally, strains mutated for T3SS formation were less invasive than the wild-type strains, but the decrease in invasion was not significant in Kentucky. CONCLUSIONS: Strains mutated for T3SS formation were able to initiate invasion of the eukaryotic monolayer to varying degrees based on strain, In the case of Kentucky, the mutated strain initiated invasion at a level that was not significantly different from the wild-type strain. A different result was observed for Typhimurium as the mutation significantly lowered the rate of invasion in comparison to the wild-type strain.


Assuntos
Salmonella enterica/classificação , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Salmonella typhimurium/classificação , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Sorogrupo , Células CACO-2/microbiologia , Técnicas de Cultura de Células , Contagem de Colônia Microbiana , DNA Bacteriano , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Humanos , Kentucky , Fenótipo , Infecções por Salmonella/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Deleção de Sequência , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/fisiologia , Tropismo Viral/genética , Fatores de Virulência/genética
14.
FASEB J ; 29(10): 4214-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116703

RESUMO

Hepatitis C virus (HCV) infection is one of the leading causes of chronic liver diseases; however, HCV vaccine remains unavailable to date. One main obstacle is the lack of an efficient small animal model. Cluster of differentiation 81 (CD81) is an essential entry coreceptor for HCV species specificity to humans, though the underlying mechanisms are yet to be fully elucidated. We performed structural, biophysical, and virologic studies on HCV nonpermissive CD81s from mice and African green monkeys [mouse cluster of differentiation 81 (mCD81) and African green monkey cluster of differentiation 81 (agmCD81)] and compared with human cluster of differentiation 81 (hCD81). We discovered an intramolecular hydrogen bond (Gln188-Nε2-H: Glu196-Oε2, 2 Å, 124°) within the large extracellular loop (LEL) of mCD81 and a salt bridge (Lys188-Nζ: Asp196-Oδ2, 2.4 Å) within agmCD81-LEL between residues 188 and 196. This structural feature is missing in hCD81. We demonstrated that the introduction of a single 188-196 bond to hCD81 impaired its binding affinity to HCV envelope glycoprotein 2 (HCV E2) and significantly decreased HCV pseudoviral particle (HCVpp) entry efficiency (4.92- to 8.42-fold) and cell culture-grown HCV (HCVcc) infectivity (4.55-fold), despite the availability of Phe186. For HCV nonpermissive CD81s, the introduction of Phe186 by Leu186F substitution alone was insufficient to confer HCV permissiveness. The disruption of the original 188-196 bond and Leu186F substitution were both required for potent binding to HCV E2 HCVpp entry efficiency and HCVcc infectivity. Our structural and biophysical analyses suggest that the intramolecular 188-196 bond restricts the intrinsic conformational dynamics of D-helix of CD81-LEL, which is essential for HCV entry, thus impairs HCV permissiveness. Our findings reveal a novel molecular determinant for HCV entry in addition to the well-characterized Phe186 and provide further guideline for selecting an HCV small animal model.


Assuntos
Hepacivirus/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Tetraspanina 28/genética , Proteínas do Envelope Viral/metabolismo , Ligação Viral
15.
Cell Insight ; 3(1): 100145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38476250

RESUMO

Angiotensin-converting enzyme 2 (ACE2) was recognized as an entry receptor shared by coronaviruses from Sarbecovirus and Setracovirus subgenera, including three human coronaviruses: SARS-CoV, SARS-CoV-2, and NL63. We recently disclosed that NeoCoV and three other merbecoviruses (PDF-2180, MOW15-22, PnNL 2018B), which are MERS-CoV relatives found in African and European bats, also utilize ACE2 as their functional receptors through unique receptor binding mechanisms. This unexpected receptor usage assumes significance, particularly in light of the prior recognition of Dipeptidyl peptidase-4 (DPP4) as the only known protein receptor for merbecoviruses. In contrast to other ACE2-using coronaviruses, NeoCoV and PDF-2180 engage a distinct and relatively compact binding surface on ACE2, facilitated by protein-glycan interactions, which is demonstrated by the Cryo-EM structures of the receptor binding domains (RBDs) of these viruses in complex with a bat ACE2 orthologue. These findings further support the hypothesis that phylogenetically distant coronaviruses, characterized by distinct RBD structures, can independently evolve to acquire ACE2 affinity during inter-species transmission and adaptive evolution. To date, these viruses have exhibited limited efficiency in entering human cells, although single mutations like T510F in NeoCoV can overcome the incompatibility with human ACE2. In this review, we present a comprehensive overview of ACE2-using merbecoviruses, summarize our current knowledge regarding receptor usage and host tropism determination, and deliberate on potential strategies for prevention and intervention, with the goal of mitigating potential future outbreaks caused by spillover of these viruses.

16.
Virus Res ; 340: 199304, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142890

RESUMO

Influenza A viruses (IAVs) originate from wild birds but have on several occasions jumped host barriers and are now also circulating in humans and mammals. The IAV host receptors (glycans with galactose linked to a sialic acid (SA) in an α2,3 or α2,6 linkage) are crucial host factors restricting inter-species transmission. In general, avian-origin IAVs show a preference for SA-α2,3 (avian receptor), whereas IAVs isolated from humans and pigs prefer SA-α2,6 (human receptor). N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two major SAs. Neu5Ac is expressed in all species, whereas Neu5Gc is only expressed in a limited number of domestic species such as pigs and horses, but not in humans. Despite that previous studies have shown that the IAV host receptor distribution appears to be similar in pigs and humans, none of these studies have investigated the expression of Neu5Gc-α2,6 in situ in porcine tissues. Thus, the aim of this study was to elucidate the distribution of IAV host receptors expressed in the porcine respiratory tract and relate the expression to the viral tropism of diverse host-adapted IAVs. The IAV receptor (SA-α2,3 and SA-α2,6) distribution and the presence of specifically Neu5Gc-α2,6 in the porcine nasal, tracheal, and lung tissues was investigated by lectin histochemistry. Furthermore, IAV immunohistochemistry was performed on tissues from pigs experimentally infected with IAVs, either adapted to pigs or humans, to investigate the significance of the IAV host receptors and the tropism of the diverse host-adapted IAVs. We document for the first time the expression of the avian receptor on the surface of the porcine nasal mucosa and an equal expression of Neu5Ac-α2,6 and Neu5Gc-α2,6 on the surface of the tracheal epithelium and alveoli. In all IAV-infected pigs, we found a low amount of IAV-positive cells in the trachea despite a high expression of the human receptor. Cumulatively, these findings suggest that optimal IAV replication involves a complex interplay between the viruses and their host receptors and that there might be other less clearly defined host factors that determine the site of replication.


Assuntos
Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Mucosa Nasal , Receptores Virais/genética , Receptores Virais/metabolismo , Suínos , Traqueia
17.
Mycologia ; 116(5): 775-791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976827

RESUMO

A new and threatened polypore species, Bondarzewia loguerciae, is described from the cloud forests of southern Brazil. It is characterized by single-pileate basidiomata that grow on dead branches and along living stems of standing trunks and present a context with dark lines and resinous tubes. When growing in axenic culture, this species also develops chlamydospores. We provide an illustrated morphological description and molecular analysis. Our specimens from Brazil form a monophyletic group among other species of the Southern Hemisphere. The conservation status of B. loguerciae is assessed and published as "Critically Endangered" based on the International Union for Conservation of Nature  (IUCN) criteria. Additionally, a key to the species is provided.


Assuntos
DNA Fúngico , Espécies em Perigo de Extinção , Florestas , Filogenia , Esporos Fúngicos , Brasil , DNA Fúngico/genética , Esporos Fúngicos/citologia , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA
18.
Toxins (Basel) ; 16(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39330864

RESUMO

ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these toxins are insecticidal, drawing increasing interest in agriculture for use as biological pesticides. The A subunit (TcA) is the largest subunit of the complex and contains domains associated with membrane permeation and targeting. The B and C subunits, TcB and TcC, respectively, package into a cocoon-like structure that contains a toxic peptide and are coupled to TcA to form a continuous channel upon final assembly. In this review, we outline the current understanding and gaps in the knowledge pertaining to ABC toxins, highlighting seven published structures of TcAs and how these structures have led to a better understanding of the mechanism of host tropism and toxin translocation. We also highlight similarities and differences between homologues that contribute to variations in host specificity and conformational change. Lastly, we review the biotechnological potential of ABC toxins as both pesticides and cargo-carrying shuttles that enable the transport of peptides into cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Tropismo ao Hospedeiro
19.
mBio ; : e0263524, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377575

RESUMO

Hepatitis E virus (HEV) is distinct from other hepatotropic viruses because it is zoonotic. HEV-1 and HEV-2 exclusively infect humans, whereas HEV-3 and HEV-4 are zoonotic. However, the viral and/or host factors responsible for cross-species HEV transmission remain elusive. The hypervariable region (HVR) in HEV is extremely heterogenetic and is implicated in HEV adaptation. Here, we investigated the potential role of Serine phosphorylation in the HVR in HEV replication. We first analyzed HVR sequences across different HEV genotypes and identified a unique region at the N-terminus of the HVR, which is variable in the human-exclusive HEV genotypes but relatively conserved in zoonotic HEV genotypes. Using predictive tools, we identified four potential phosphorylation sites that are highly conserved in zoonotic HEV-3 and HEV-4 genomes but absent in human-exclusive HEV-1 strains. To explore the functional significance of these putative phosphorylation sites, we introduced mutations into the HEV-3 infectious clone and indicator replicon, replacing each Serine residue individually with alanine or aspartic acid, and assessed the impact of these substitutions on HEV-3 replication. We found that the phospho-blatant S711A mutant significantly reduced virus replication, whereas the phospho-mimetic S711D mutant modestly reduced virus replication. Conversely, mutations in the other three Serine residues did not significantly affect HEV-3 replication. Furthermore, we demonstrated that Ser711 phosphorylation did not alter host cell tropism of zoonotic HEV-3. In conclusion, our results showed that potential phosphorylation of the Ser711 residue significantly affects HEV-3 replication in vitro, providing new insights into the potential mechanisms of zoonotic HEV transmission.IMPORTANCEHEV is an important zoonotic pathogen, causing both acute and chronic hepatitis E and extrahepatic manifestation of diseases, such as neurological sequelae. The zoonotic HEV-3 is linked to chronic infection and neurological diseases. The specific viral and/or host factors facilitating cross-species HEV infection are unknown. The intrinsically disordered HVR in ORF1 is crucial for viral fitness and adaptation, both in vitro and in vivo. We hypothesized that phosphorylation of Serine residues in the HVR of zoonotic HEV by unknown host cellular kinases is associated with cross-species HEV transmission. In this study, we identified a conserved region within the HVR of zoonotic HEV strains but absent in the human-exclusive HEV-1 and HEV-2. We elucidated the important role of phosphorylation at the Ser711 residue in zoonotic HEV-3 replication, without altering the host cell tropism. These findings contribute to our understanding the mechanisms of cross-species HEV transmission.

20.
Trop Med Infect Dis ; 9(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39330884

RESUMO

The United States of America (US) has the highest annual number of human babesiosis cases caused by Babesia microti (Bm). Babesia, like malaria-causing Plasmodium, are protozoan parasites that live within red blood cells (RBCs). Both infectious diseases can be associated with hemolysis and organ damage, which can be fatal. Since babesiosis was made a nationally notifiable condition by the Centers for Disease Control and Prevention (CDC) in January 2011, human cases have increased, and drug-resistant strains have been identified. Both the Bm ligand(s) and RBC receptor(s) needed for invasion are unknown, partly because of the difficulty of developing a continuous in vitro culture system. Invasion pathways are relevant for therapies (e.g., RBC exchange) and vaccines. We hypothesize that there is at least one RBC surface antigen that is essential for Bm invasion and that all Bm hosts express this. Because most RBC surface antigens that impact Plasmodium invasion are in human blood group (hBG) systems, which are generated by 51 genes, they were the focus of this study. More than 600 animals with at least one hBG system gene ortholog were identified using the National Center for Biotechnology Information (NCBI) command-line tools. Google Scholar searches were performed to determine which of these animals are susceptible to Bm infection. The literature review revealed 28 Bm non-human hosts (NHH). For 5/51 (9.8%) hBG system genes (e.g., RhD), no NHH had orthologs. This means that RhD is unlikely to be an essential receptor for invasion. For 24/51 (47.1%) hBG system genes, NHH had 4-27 orthologs. For the ABO gene, 15/28 NHH had an ortholog, meaning that this gene is also unlikely to generate an RBC antigen, which is essential for Bm invasion. Our prior research showed that persons with blood type A, B, AB, O, RhD+, and RhD- can all be infected with Bm, supporting our current study's predictions. For 22/51 (43.1%) hBG system genes, orthologs were found in all 28 NHH. Nineteen (37.3%) of these genes encode RBC surface proteins, meaning they are good candidates for generating a receptor needed for Bm invasion. In vitro cultures of Bm, experimental Bm infection of transgenic mice (e.g., a CD44 KO strain), and analyses of Bm patients can reveal further clues as to which RBC antigens may be essential for invasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA