Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 873
Filtrar
1.
EMBO J ; 41(18): e110488, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35949182

RESUMO

Adulte interfollicular epidermis (IFE) renewal is likely orchestrated by physiological demands of its complex tissue architecture comprising spatial and cellular heterogeneity. Mouse tail and back skin display two kinds of basal IFE spatial domains that regenerate at different rates. Here, we elucidate the molecular and cellular states of basal IFE domains by marker expression and single-cell transcriptomics in mouse and human skin. We uncover two paths of basal cell differentiation that in part reflect the IFE spatial domain organization. We unravel previously unrecognized similarities between mouse tail IFE basal domains defined as scales and interscales versus human rete ridges and inter-ridges, respectively. Furthermore, our basal IFE transcriptomics and gene targeting in mice provide evidence supporting a physiological role of IFE domains in adaptation to differential UV exposure. We identify Sox6 as a novel UV-induced and interscale/inter-ridge preferred basal IFE-domain transcription factor, important for IFE proliferation and survival. The spatial, cellular, and molecular organization of IFE basal domains underscores skin adaptation to environmental exposure and its unusual robustness in adult homeostasis.


Assuntos
Células Epidérmicas , Epiderme , Adulto , Animais , Diferenciação Celular/genética , Exposição Ambiental , Humanos , Camundongos , Pele
2.
J Cell Physiol ; : e31463, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377615

RESUMO

Increased prevalence of skin ageing is a growing concern due to an ageing global population and has both sociological and psychological implications. The use of more clinically predictive in vitro methods for dermatological research is becoming commonplace due to initiatives and the cost of clinical testing. In this study, we utilise a well-defined and characterised bioengineered skin construct as a tool to investigate the cellular and molecular dynamics involved in skin ageing from a dermal perspective. Through incorporation of ageing fibroblasts into the dermal compartment we demonstrate the significant impact of dermal-epidermal crosstalk on the overlying epidermal epithelium. We characterise the paracrine nature of dermal-epidermal communication and the impact this has during skin ageing. Soluble factors, such as inflammatory cytokines released as a consequence of senescence associated secretory phenotype (SASP) from ageing fibroblasts, are known to play a pivotal role in skin ageing. Here, we demonstrate their effect on epidermal morphology and thickness, but not keratinocyte differentiation or tissue structure. Through a novel in vitro strategy utilising bioengineered tissue constructs, this study offers a unique reductionist approach to study epidermal and dermal compartments in isolation and tandem.

3.
Curr Issues Mol Biol ; 46(1): 513-526, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248335

RESUMO

The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin's surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut-skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin's extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging.

4.
Small ; : e2403360, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105450

RESUMO

Ultraviolet A (UVA) radiation causes various irreversible damages to human skin, so the research about UVA-specific sensing device is urgent. 2D black phosphorus (BP) is used in many photosensors due to its advantages of high carrier mobility and tunable bandgap, but its application for UVA-specific photosensor is not reported. Here, a MXene-BP/Zinc oxide (ZnO) hybrid structure with lamellar-spherical interfaces like finger lime fruit is prepared by the layer-by-layer assembly (LLA) method, and p-n junctions are constructed between BP and ZnO with the Ti3C2Tx electrode, showing excellent photoelectric performance. Density functional theory (DFT) calculations demonstrate that the enhanced performance is attributed to the rapid separation of photogenerated carriers in the presence of a built-in electric field at interface. Furthermore, a flexible MXene-BP/ZnO based UVA-specific photosensor is prepared, which shows a specific response to UVA as high as 7 mA W-1 and excellent mechanical stability, maintaining 98.46% response after 100 bending cycles. In particular, the integrated anti-UVA skin protection device shows excellent UVA-specific identification and wireless transmission capability, which can provide timely UVA exposure information and skin protection warning for the visually impaired. This work demonstrates a new approach for further developments of advanced photoelectric sensing technology toward improving people's skin health protection.

5.
Small ; 20(7): e2304940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806753

RESUMO

Organotypic 3D tissue models have greatly contributed to understand a wide range of molecular and cellular characteristics within a functional or diseased tissue. Human skin reconstructs which act as models are most useful for a wide range of investigations, ranging from tissue engineering and regenerative medicine, drug development, screening, and discovery to name a few. There are many approaches for reconstructing 3D skin tissue models, however, to date there have been very few that are able to generate organotypic 3D constructs with a single technology having minimal processing steps to finally scalability. The many manifestations of 3D bioprinting have contributed to this endeavor, having said that, the technology's limitations have tempered those reconstructed models, as they are known to contain low cell numbers/concentrations to those having damaged/dead molecules/cells within the reconstructed tissue, which are not desirable, for exploring as tissues models. Contrary to 3D bioprinting approaches, bio-electrosprays have been demonstrated to possess the ability to handle large concentrations of cells and molecules to whole fertilized embryos without damaging them from a molecular level upwards. Consequently, this article demonstrates, for the first time, bio-electrospray's capacity to reconstruct skin-like structures in vitro and its potential in reconstructing full-thickness 3D organotypic human skin tissues.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Humanos , Medicina Regenerativa , Desenvolvimento de Medicamentos
6.
J Virol ; 97(6): e0026223, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289055

RESUMO

Herpes simplex virus 1 (HSV-1) must overcome epidermal barriers to reach its receptors on keratinocytes and initiate infection in human skin. The cell-adhesion molecule nectin-1, which is expressed in human epidermis, acts as an efficient receptor for HSV-1 but is not within reach of the virus upon exposure of human skin under nonpathological conditions. Atopic dermatitis skin, however, can provide an entry portal for HSV-1 emphasizing the role of impaired barrier functions. Here, we explored how epidermal barriers impact HSV-1 invasion in human epidermis and influence the accessibility of nectin-1 for the virus. Using human epidermal equivalents, we observed a correlation of the number of infected cells with tight-junction formation, suggesting that mature tight junctions prior to formation of the stratum corneum prevent viral access to nectin-1. Consequently, impaired epidermal barriers driven by Th2-inflammatory cytokines interleukin 4 (IL-4) and IL-13 as well as the genetic predisposition of nonlesional atopic dermatitis keratinocytes correlated with enhanced infection supporting the impact of functional tight junctions for preventing infection in human epidermis. Comparable to E-cadherin, nectin-1 was distributed throughout the epidermal layers and localized just underneath the tight-junctions. While nectin-1 was evenly distributed on primary human keratinocytes in culture, the receptor was enriched at lateral surfaces of basal and suprabasal cells during differentiation. Nectin-1 showed no major redistribution in the thickened atopic dermatitis and IL-4/IL-13-treated human epidermis in which HSV-1 can invade. However, nectin-1 localization toward tight junction components changed, suggesting that defective tight-junction barriers make nectin-1 accessible for HSV-1 which enables facilitated viral penetration. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a widely distributed human pathogen which productively infects epithelia. The open question is which barriers of the highly protected epithelia must the virus overcome to reach its receptor nectin-1. Here, we used human epidermal equivalents to understand how physical barrier formation and nectin-1 distribution contribute to successful viral invasion. Inflammation-induced barrier defects led to facilitated viral penetration strengthening the role of functional tight-junctions in hindering viral access to nectin-1 that is localized just underneath tight junctions and distributed throughout all layers. We also found nectin-1 ubiquitously localized in the epidermis of atopic dermatitis and IL-4/IL-13-treated human skin implying that impaired tight-junctions in combination with a defective cornified layer allow the accessibility of nectin-1 to HSV-1. Our results support that successful invasion of HSV-1 in human skin relies on defective epidermal barriers, which not only include a dysfunctional cornified layer but also depend on impaired tight junctions.


Assuntos
Dermatite Atópica , Herpes Simples , Herpesvirus Humano 1 , Nectinas , Junções Íntimas , Humanos , Dermatite Atópica/virologia , Epiderme/virologia , Herpesvirus Humano 1/fisiologia , Interleucina-13 , Interleucina-4
7.
Exp Dermatol ; 33(6): e15100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840387

RESUMO

Skin wound healing is driven by proliferation, migration and differentiation of several cell types that are controlled by the alterations in the gene expression programmes. Brahma Gene 1 (BRG1) (also known as SMARCA4) is a core ATPase in the BRG1 Associated Factors (BAF) ATP-dependent chromatin remodelling complexes that alter DNA-histone interaction in chromatin at the specific gene regulatory elements resulting in increase or decrease of the target gene transcription. Using siRNA mediated suppression of BRG1 during wound healing in a human ex vivo and in vitro (scratch assay) models, we demonstrated that BRG1 is essential for efficient skin wound healing by promoting epidermal keratinocytes migration, but not their proliferation or survival. BRG1 controls changes in the expression of genes associated with gene transcription, response to wounding, cell migration and cell signalling. Altogether, our data revealed that BRG1 play positive role in skin repair by promoting keratinocyte migration and impacting the genes expression programmes associated with cell migration and cellular signalling.


Assuntos
Movimento Celular , DNA Helicases , Queratinócitos , Proteínas Nucleares , Transdução de Sinais , Fatores de Transcrição , Cicatrização , Humanos , Queratinócitos/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Pele/metabolismo , Proliferação de Células , RNA Interferente Pequeno
8.
Exp Dermatol ; 33(5): e15099, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38794814

RESUMO

Suitable human models for the development and characterization of topical compounds for inflammatory skin diseases such as atopic dermatitis are not readily available to date. We describe here the development of a translational model involving healthy human skin mimicking major aspects of AD and its application for the characterization of topical Janus kinase inhibitors. Full thickness human abdominal skin obtained from plastic surgery stimulated in vitro with IL4 and IL13 shows molecular features of AD. This is evidenced by STAT6 phosphorylation assessed by immunohistochemistry and analysis of skin lysates. Broad transcriptome changes assessed by AmpliSeq followed by gene set variation analysis showed a consistent upregulation of gene signatures characterizing AD in this model. Topical application of experimental formulations of compounds targeting the JAK pathway to full thickness skin normalizes the molecular features of AD induced by IL4 and IL13 stimulation. The inhibitory effects of topical JAK inhibitors on molecular features of AD are supported by pharmacokinetic analysis. The model described here is suited for the characterization of topical compounds for AD and has the potential to be extended to other inflammatory skin diseases and pathophysiological pathways.


Assuntos
Dermatite Atópica , Inibidores de Janus Quinases , Pele , Humanos , Dermatite Atópica/tratamento farmacológico , Pele/metabolismo , Pele/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Fator de Transcrição STAT6/metabolismo , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Fosforilação , Transcriptoma , Modelos Biológicos , Pirimidinas/farmacologia , Administração Tópica , Piperidinas
9.
Exp Dermatol ; 33(1): e14955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897068

RESUMO

Preclinical human skin ageing research has been limited by the paucity of instructive and clinically relevant models. In this pilot study, we report that healthy human skin of different age groups undergoes extremely accelerated ageing within only 3 days, if organ-cultured in a defined serum-free medium. Quantitative (immuno-)histomorphometry documented this unexpected ex vivo phenotype on the basis of ageing-associated biomarkers: the epidermis showed significantly reduced rete ridges and keratinocyte proliferation, sirtuin-1, MTCO1 and collagen 17a1 protein levels; this contrasted with significantly increased expression of the DNA-damage marker, γH2A.X. In the dermis, collagen 1 and 3 and hyaluronic acid content were significantly reduced compared to Day 0 skin. qRT-PCR of whole skin RNA extracts also showed up-regulated mRNA levels of several (inflamm-) ageing biomarkers (MMP-1, -2, -3, -9; IL6, IL8, CXCL10 and CDKN1). Caffeine, a methylxanthine with recognized anti-ageing properties, counteracted the dermal collagen 1 and 3 reduction, the epidermal accumulation of γH2A.X, and the up-regulation of CXCL10, IL6, IL8, MMP2 and CDKN1. Finally, we present novel anti-ageing effects of topical 2,5-dimethylpyrazine, a natural pheromone TRPM5 ion channel activator. Thus, this instructive, clinically relevant "speed-ageing" assay provides a simple, but powerful new research tool for dissecting skin ageing and rejuvenation, and is well-suited to identify novel anti-ageing actives directly in the human target organ.


Assuntos
Cafeína , Pirazinas , Envelhecimento da Pele , Humanos , Recém-Nascido , Cafeína/farmacologia , Senoterapia , Técnicas de Cultura de Órgãos , Projetos Piloto , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Pele/metabolismo , Envelhecimento , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Biomarcadores/metabolismo
10.
Exp Dermatol ; 33(6): e15113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855894

RESUMO

The mineral content of thermal spring water (TSW) applied to the skin surface can directly influence the skin barrier. Indeed, our previous study showed that Avène TSW (ATSW), a low mineral content thermal spring water, protects the stratum corneum from dehydration compared to a mineral-rich TSW (MR-TSW) and maintains skin surface ultrastructure. While many TSWs have been recognized to have beneficial effects on skin, little is known about their localized and specific effects on skin barrier biomechanics at the nanometric scale. The aim of this study was to compare the effects of ATSW with a reference, MR-TSW, on the biomechanical barrier properties of the skin under homeostasis conditions using atomic force microscopy (AFM). AFM was used to obtain a precise nanomechanical mapping of the skin surface after three applications of both TSW. This provides specific information on the skin topographical profile and elasticity. The topographic profile of skin samples showed a specific compaction of the skin layers after application of MR-TSW, characterized by an increase of the total number of external skin layers, compared to non-treated samples. By contrast, ATSW did not modify the skin topographic profile. High-resolution force/volume acquisitions to capture the elastic modulus showed that it was directly correlated with skin rigidity. The elastic modulus strongly and significantly increased after MR-TSW application compared to non-treated skin. By contrast, applications of ATSW did not increase elastic modulus. These data demonstrate that applications of MR-TSW significantly modified skin barrier properties by increasing skin surface layer compaction and skin rigidity. By contrast, ATSW did not modify the topographical profile of skin explants nor induce mechanical stress at the level of the stratum corneum, indicating it does not disrupt the biophysical properties linked to skin surface integrity.


Assuntos
Microscopia de Força Atômica , Pele , Humanos , Módulo de Elasticidade , Fenômenos Biomecânicos , Águas Minerais , Fontes Termais , Fenômenos Fisiológicos da Pele , Elasticidade
11.
Exp Dermatol ; 33(5): e15077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711200

RESUMO

Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.


Assuntos
Dermatite Atópica , Fibroblastos , Interleucina-13 , Interleucina-4 , Queratinócitos , Análise de Sequência de RNA , Análise de Célula Única , Células Th2 , Humanos , Fibroblastos/metabolismo , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Citocinas/metabolismo , Técnicas de Cocultura , RNA-Seq , Células Cultivadas , Pele/patologia
12.
Allergy ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39157907

RESUMO

BACKGROUND: The field of drug development is witnessing a remarkable surge in the development of innovative strategies. There is a need to develop technological platforms capable of generating human data prior to progressing to clinical trials. METHODS: Here we introduce a new flexible solution designed for the comprehensive monitoring of the natural human skin ecosystem's response to immunogenic drugs over time. Based on unique bioengineering to preserve surgical resections in a long survival state, it allows for the first time a comprehensive analysis of resident immune cells response at both organ and single-cell levels. RESULTS: Upon injection of the mRNA-1273 COVID-19 vaccine, we characterized precise sequential molecular events triggered upon detection of the exogenous substance. The vaccine consistently targets DC/macrophages and mast cells, regardless of the administration route, while promoting specific cell-cell communications in surrounding immune cell subsets. CONCLUSION: Given its direct translational relevance, this approach provides a multiscale vision of genuine human tissue immunity that could pave the way toward the development of new vaccination and drug development strategies.

13.
Allergy ; 79(1): 128-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37766519

RESUMO

BACKGROUND: Epithelial barrier impairment is associated with many skin and mucosal inflammatory disorders. Laundry detergents have been demonstrated to affect epithelial barrier function in vitro using air-liquid interface cultures of human epithelial cells. METHODS: Back skin of C57BL/6 mice was treated with two household laundry detergents at several dilutions. Barrier function was assessed by electric impedance spectroscopy (EIS) and transepidermal water loss (TEWL) measurements after the 4 h of treatments with detergents. RNA sequencing (RNA-seq) and targeted multiplex proteomics analyses in skin biopsy samples were performed. The 6-h treatment effect of laundry detergent and sodium dodecyl sulfate (SDS) was investigated on ex vivo human skin. RESULTS: Detergent-treated skin showed a significant EIS reduction and TEWL increase compared to untreated skin, with a relatively higher sensitivity and dose-response in EIS. The RNA-seq showed the reduction of the expression of several genes essential for skin barrier integrity, such as tight junctions and adherens junction proteins. In contrast, keratinization, lipid metabolic processes, and epidermal cell differentiation were upregulated. Proteomics analysis showed that the detergents treatment generally downregulated cell adhesion-related proteins, such as epithelial cell adhesion molecule and contactin-1, and upregulated proinflammatory proteins, such as interleukin 6 and interleukin 1 beta. Both detergent and SDS led to a significant decrease in EIS values in the ex vivo human skin model. CONCLUSION: The present study demonstrated that laundry detergents and its main component, SDS impaired the epidermal barrier in vivo and ex vivo human skin. Daily detergent exposure may cause skin barrier disruption and may contribute to the development of atopic diseases.


Assuntos
Detergentes , Pele , Humanos , Camundongos , Animais , Detergentes/efeitos adversos , Detergentes/química , Detergentes/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Epiderme/metabolismo , Inflamação/metabolismo
14.
Biotechnol Bioeng ; 121(6): 1950-1960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470332

RESUMO

In developing three-dimensional (3D) human skin equivalents (HSEs), preventing dermis and epidermis layer distortion due to the contraction of hydrogels by fibroblasts is a challenging issue. Previously, a fabrication method of HSEs was tested using a modified solid scaffold or a hydrogel matrix in combination with the natural polymer coated onto the tissue culture surface, but the obtained HSEs exhibited skin layer contraction and loss of the skin integrity and barrier functions. In this study, we investigated the method of HSE fabrication that enhances the stability of the skin model by using surface plasma treatment. The results showed that plasma treatment of the tissue culture surface prevented dermal layer shrinkage of HSEs, in contrast to the HSE fabrication using fibronectin coating. The HSEs from plasma-treated surface showed significantly higher transepithelial electrical resistance compared to the fibronectin-coated model. They also expressed markers of epidermal differentiation (keratin 10, keratin 14 and loricrin), epidermal tight junctions (claudin 1 and zonula occludens-1), and extracellular matrix proteins (collagen IV), and exhibited morphological characteristics of the primary human skins. Taken together, the use of plasma surface treatment significantly improves the stability of 3D HSEs with well-defined dermis and epidermis layers and enhanced skin integrity and the barrier functions.


Assuntos
Pele Artificial , Humanos , Gases em Plasma/química , Gases em Plasma/farmacologia , Engenharia Tecidual/métodos , Pele/química
15.
Biogerontology ; 25(1): 161-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37736858

RESUMO

Accumulation of senescent fibroblasts, chronic inflammation, and collagen remodeling due to aging-related secretory phenotypes have been hypothesized to cause age-related skin aging, which results in wrinkles and loss of skin elasticity, thus compromising appearance attractiveness. However, the rejuvenating effects of removing senescent cells from the human skin and the efficacy of related therapeutic agents remain unclear. Here, we investigated the effects of fisetin, a potential anti-aging component found in various edible fruits and vegetables, on senescent human dermal fibroblasts (HDFs) and aging human skin. Senescence was induced in primary HDFs using long-term passaging and treatment with ionizing radiation, and cell viability was assessed after treatment with fisetin and a control component. A mouse/human chimeric model was established by subcutaneously transplanting whole skin grafts from aged individuals into nude mice, which were treated intraperitoneally with fisetin or control a component for 30 d. Skin samples were obtained and subjected to senescence-associated-beta-galactosidase staining; the extent of aging was evaluated using western blotting, reverse transcription-quantitative PCR, and histological analysis. Fisetin selectively eliminated senescent dermal fibroblasts in both senescence-induced cellular models; this effect is attributable to cell death induction by caspases 3, 8, and 9-mediated endogenous and exogenous apoptosis. Fisetin-treated senescent human skin grafts showed increased collagen density and decreased senescence-associated secretory phenotypes (SASP), including matrix metalloproteinases and interleukins. No apparent adverse events were observed. Thus, fisetin could improve skin aging through selective removal of senescent dermal fibroblasts and SASP inhibition, indicating its potential as an effective novel therapeutic agent for combating skin aging.


Assuntos
Senescência Celular , Flavonóis , Rejuvenescimento , Animais , Camundongos , Humanos , Idoso , Senescência Celular/fisiologia , Camundongos Nus , Fibroblastos , Colágeno/metabolismo , Colágeno/farmacologia , Derme/metabolismo
16.
Environ Sci Technol ; 58(10): 4704-4715, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38326946

RESUMO

Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Humanos , Tamanho da Partícula , Ozônio/análise , Ventilação/métodos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
17.
Environ Res ; 255: 119118, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763278

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are persistent environmental pollutants, which occasionally appear as contaminants in consumer products. Upon dermal contact, transfer of PAH into the stratum corneum (s.c.) and migration through the skin may occur, resulting in this class of highly toxic compounds to become bioavailable. In this study, dermal penetration through human and porcine skin of 24 PAH, comprising broad molar mass (M: 152-302 g/mol) and octanol-water partition coefficient (logP: 3.9-7.3) ranges, was evaluated via Franz diffusion cell in vitro assays. More lipophilic and potentially more toxic PAH had decreased permeation rates through the rather lipophilic s.c. into the more hydrophilic viable (epi-)dermis. Furthermore, human skin was less permeable than pigskin, a commonly used surrogate in skin penetration studies. In particular, the s.c. of human skin retains a greater share of PAH, an effect that is more pronounced for smaller PAH. Additionally, we compared the skin permeation kinetics of different PAH in pigskin. While small PAH (M < 230 g/mol, logP < 6) permeate the skin quickly and are detected in the receptor fluid after 2 h, large PAH (M > 252 g/mol, logP ≥ 6) do not fully permeate the skin up to 48 h. This indicates that highly lipophilic PAH do not become bioavailable as readily as their smaller congeners when transferred to the skin surface. Our data suggest that pigskin could be used as a surrogate for worst case scenario estimates of dermal PAH permeation through human skin.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Absorção Cutânea , Pele , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Humanos , Animais , Suínos , Pele/metabolismo , Permeabilidade , Técnicas In Vitro , Feminino , Adulto
18.
J Appl Toxicol ; 44(9): 1361-1371, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730557

RESUMO

In a chemical mass casualty incident requiring skin decontamination, dry removal using absorbent materials may be beneficial to enable immediate decontamination. The efficacy of absorbent materials has therefore been evaluated, alone or procedures including both dry and wet decontamination, following skin exposure to two low volatile toxic chemicals using an in vitro human skin penetration model. Additionally, removal using active carbon wipes was evaluated with or without the Dahlgren Decon solution. All dry decontamination procedures resulted in a significantly decreased skin penetration rate of the industrial chemical 2-butoxyethanol compared to the control without decontamination. Wet decontamination following dry absorption significantly improved the efficacy compared to dry removal alone. Dry decontamination post-exposure to the chemical warfare nerve agent VX showed no decontamination efficacy. However, dry and wet decontamination resulted in a decreased agent skin penetration rate during the last hour of the experiment. At -15°C, significantly reduced VX skin penetration rates were demonstrated for both dry decontamination alone and the dry and wet decontamination procedure. The Dahlgren Decon solution significantly reduced the amount of VX penetrating the skin, but the active carbon wipe alone did not impact the skin penetration rate. In conclusion, absorbent materials are beneficial for the removal of low-volatile chemicals from the skin, but the degree of efficacy varies between chemicals. Despite the variability, immediate dry decontamination using available absorbent materials prior to wet decontamination is recommended as a general procedure for skin decontamination. The procedure should also be prioritized in cold-weather conditions to prevent patient hypothermia.


Assuntos
Descontaminação , Absorção Cutânea , Pele , Descontaminação/métodos , Humanos , Pele/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Substâncias para a Guerra Química/toxicidade , Etilenoglicóis
19.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580202

RESUMO

Action spectra are important biological weighting functions for risk/benefit analyses of ultraviolet (UV) radiation (UVR) exposure. One important human benefit of exposure to terrestrial solar UVB radiation (∼295 to 315 nm) is the cutaneous synthesis of vitamin D3 that is initiated by the photoconversion of 7-dehydrocholesterol to previtamin D3 An action spectrum for this process that is followed by other nonphotochemical steps to achieve biologically active vitamin D3 has been established from ex vivo data and is widely used, although its validity has been questioned. We tested this action spectrum in vivo by full- or partial-body suberythemal irradiation of 75 healthy young volunteers with five different polychromatic UVR spectra on five serial occasions. Serum 25-hydroxyvitamin D3 [25(OH)D3] levels, as the most accurate measure of vitamin D3 status, were assessed before, during, and after the exposures. These were then used to generate linear dose-response curves that were different for each UVR spectrum. It was established that the previtamin D3 action spectrum was not valid when related to the serum 25(OH)D3 levels, as weighting the UVR doses with this action spectrum did not result in a common regression line unless it was adjusted by a blue shift, with 5 nm giving the best fit. Such a blue shift is in accord with the published in vitro action spectra for vitamin D3 synthesis. Thus, calculations regarding the risk (typically erythema) versus the benefit of exposure to solar UVR based on the ex vivo previtamin D3 action spectrum require revision.


Assuntos
Eritema/etiologia , Pele/efeitos da radiação , Raios Ultravioleta , Vitamina D/biossíntese , Adulto , Calcifediol/sangue , Relação Dose-Resposta à Radiação , Humanos , Pele/metabolismo , Adulto Jovem
20.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256238

RESUMO

Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.


Assuntos
Microbiota , Pele , Humanos , Tato , Nível de Saúde , Internacionalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA