Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(15): e202203506, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36526949

RESUMO

Asymmetric catalytic transformations of N-unprotected cyclic carboxyimides such as succinimides, hydantoins, oxazolidinediones, and glitazones, is a powerful way of directly accessing variety of biologically valuable chiral compounds. Herein, a bis(trichlorosilyl) nucleophilic intermediate formed from cyclic carboxyimides was reacted with aldehydes via (S)-SEGPHOS dioxide (SEGPHOSO), proceeding the aldol reaction in highly enantioselective fashion through a cyclic transition state. Furthermore, N-unprotected carboxyimides were chemoselectively activated, even in the presence of N-alkylated carboxyimides, to undergo stereoselective and chemoselective aldol reactions via in situ silicon tetrachloride activation. The functionalized cyclic carboxyimides is readily derived to the several synthetic units derivatization to various chiral building blocks without unnecessary protection/deprotection steps.

2.
Chem Pharm Bull (Tokyo) ; 67(6): 519-526, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155556

RESUMO

Chiral phosphine oxides successfully catalyze asymmetric cross-aldol reactions of various carbonyl compounds in a highly enantioselective manner. The phosphine oxide catalysts coordinate to chlorosilanes to form chiral hypervalent silicon complexes in situ, which activate both aldol donors and acceptors, thus realizing cross-aldol reactions between a ketone and an aldehyde, between two aldehydes, between two ketones, and of 2,6-diketones. The use of phosphine oxide catalysis can be further extended to achieve the first catalytic enantioselective double aldol reactions, realizing one-pot stereoselective construction of up to four stereogenic centers.


Assuntos
Aldeídos/química , Fosfinas/química , Catálise , Ciclização , Cetonas/química , Óxidos/química , Silício/química , Estereoisomerismo
3.
Angew Chem Int Ed Engl ; 57(48): 15877-15881, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30298544

RESUMO

The first catalytic enantioselective aldol reaction of various unprotected carboxylic acids is described. In the presence of a chiral bis(phosphine oxide) as a Lewis base catalyst, carboxylic acids were activated with silicon tetrachloride to form the corresponding bis(trichlorosilyl)enediolates in situ, which subsequently underwent an aldol reaction with an aldehyde or a ketone to produce ß-hydroxycarboxylic acids in high enantioselectivities of up to 92 % ee.

4.
Molecules ; 22(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292782

RESUMO

The formation of novel chiral bidentate phosphoroamides structures able to promote Lewis base-catalyzed Lewis acid-mediated reactions was investigated. Two different classes of phosphoroamides were synthetized: the first class presents a phthalic acid/primary diamine moiety, designed with the aim to perform a self-assembly recognition process through hydrogen bonds; the second one is characterized by the presence of two phosphoroamides as side arms connected to a central pyridine unit, able to chelate SiCl4 in a 2:1 adduct. These species were tested as organocatalysts in the stereoselective allylation of benzaldehyde and a few other aromatic aldehydes with allyl tributyltin in the presence of SiCl4 with good results. NMR studies confirm that only pyridine-based phosphoroamides effectively coordinate tetrachlorosilane and may lead to the generation of a self-assembled entity that would act as a promoter of the reaction. Although further work is necessary to clarify and confirm the formation of the hypothesized adduct, the study lays the foundation for the design and the synthesis of chiral supramolecular organocatalysts.


Assuntos
Cloretos/química , Fosforamidas/análogos & derivados , Fosforamidas/química , Compostos de Silício/química , Aldeídos/química , Catálise , Ligação de Hidrogênio , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Compostos de Trialquitina/química
5.
Angew Chem Int Ed Engl ; 53(4): 1103-8, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24338980

RESUMO

Pd and Ni dimers supported by PSiP ligands in which two hypervalent five-coordinate Si atoms bridge the two metal centers are reported. Crystallographic characterization revealed a rare square-pyramidal geometry at Si and an unusual asymmetric M2 Si2 core (M=Pd or Ni). DFT calculations showed that the unusual structure of the core is also found in a model in which the phosphine and Si centers are not part of a pincer group, thus indicating that the observed geometry is not imposed by the PSiP ligand. NBO analysis showed that an asymmetric four-center two-electron (4c-2e) bond stabilizes the hypervalent Si atoms in the M2 Si2 core.

6.
Chempluschem ; 88(5): e202300038, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36861404

RESUMO

Hydrosilylation reactions are commonly used for the reduction of carbonyl bonds in fine chemistry, catalyzed by transition metal complexes. The current challenge is to expand the scope of metal-free alternative catalysts, including in particular organocatalysts. This work describes the organocatalyzed hydrosilylation of benzaldehyde with a phosphine, introduced at 10 mol%, and phenylsilane at room temperature. The activation of phenylsilane was highly dependent on the physical properties of the solvent such as the polarity, and the highest conversions were obtained in acetonitrile and propylene carbonate with yields of 46 % and 97 %, respectively. The best results of the screening over 13 phosphines and phosphites were obtained with linear trialkylphoshines (PMe3 , Pn Bu3 , POct3 ), indicating the importance of their nucleophilicity, with yields of 88 %, 46 % and 56 %, respectively. With the help of heteronuclear 1 H-29 Si NMR spectroscopy, the products of the hydrosilylation (PhSiH3-n (OBn)n ) were identified, allowing a monitoring of the concentration in the different species, and thereby of their reactivity. The reaction displayed an induction period of ca. 60 min, followed by the sequential hydrosilylations presenting various reaction rates. In agreement with the formation of partial charges in the intermediate state, we propose a mechanism based on a hypervalent silicon center via the Lewis base activation of the silicon Lewis acid.

7.
ACS Catal ; 7(3): 1766-1770, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28367354

RESUMO

An operationally simple, mild, redox-neutral method for the photoredox alkylation of imines is reported. Utilizing an inexpensive organic photoredox catalyst, alkyl radicals are readily generated from the single-electron oxidation of ammonium alkyl bis(catecholato)silicates and are subsequently engaged in a C-C bond-forming reaction with imines. The process is highly selective, metal-free, and does not require a large excess of the alkylating reagent or the use of acidic additives.

8.
ACS Catal ; 7(8): 5129-5133, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28804677

RESUMO

The chemoselective functionalization of polyfunctional aryl linchpins is crucial for rapid diversification. Although well-explored for Csp2 and Csp nucleophiles, the chemoselective introduction of Csp3 groups remains notoriously difficult and is virtually undocumented using Ni catalysts. To fill this methodological gap, a "haloselective" cross-coupling process of arenes bearing two halogens, I and Br, using ammonium alkylbis(catecholato)silicates, has been developed. Utilizing Ni/photoredox dual catalysis, Csp3 -Csp2 bonds can be forged selectively at the iodine-bearing carbon of bromo(iodo)arenes. The described high-yielding, base-free strategy accommodates various protic functional groups. Selective electrophile activation enables installation of a second Csp3 center and can be done without the need for purification of the intermediate monoalkylated product.

9.
Chem Asian J ; 11(3): 376-9, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26610889

RESUMO

By using a phosphine oxide-catalyzed enantioselective double aldol reaction, we achieved the concise construction of C2 -symmetric 1,9-diarylnonanoids, enabling the synthesis of (-)-ericanone from p-hydroxybenzaldehyde in 6 steps with 65 % overall yield. The enantioselective double aldol reaction is useful for establishing C2 -symmetric 1,9-diaryl-3,7-dihydroxy-5-nonanones with a single operation. Furthermore, the use of o-nosyl-protected p-hydroxybenzaldehyde and a 4,4'-disubstituted BINAP dioxide catalyst dramatically improved the reactivity and selectivity in the double aldol reaction, enabling the total synthesis of (-)-ericanone with high yield and with excellent enantiopurity.


Assuntos
Hidrocarbonetos Aromáticos/síntese química , Silício/química , Aldeídos/química , Benzaldeídos/química , Catálise , Hidrocarbonetos Aromáticos/química , Naftalenos/química , Óxidos/química , Fosfinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA