RESUMO
Bacteroides and Phocaeicola, members of the family Bacteroidaceae, are among the first microbes to colonize the human infant gut. While it is known that these microbes can be transmitted from mother to child, our understanding of the specific strains that are shared and potentially transmitted is limited. In this study, we aimed to investigate the shared strains of Bacteroides and Phocaeicola in mothers and their infants. We analyzed fecal samples from pregnant woman recruited at 18 weeks of gestation from the PreventADALL study, as well as offspring samples from early infancy, including skin swab samples taken within 10 min after birth, the first available fecal sample (meconium), and fecal samples at 3 months of age. We screened 464 meconium samples for Bacteroidaceae, with subsequent selection of 144 mother-child pairs for longitudinal analysis, based on the presence of Bacteroidaceae, longitudinal sample availability, and delivery mode. Our results showed that Bacteroidaceae members were mainly detected in samples from vaginally delivered infants. We identified high prevalences of Phocaeicola vulgatus, Phocaeicola dorei, Bacteroides caccae, and Bacteroides thetaiotaomicron in mothers and vaginally born infants. However, at the strain level, we observed high prevalences of only two strains: a B. caccae strain and a P. vulgatus strain. Notably, the B. caccae strain was identified as a novel component of mother-child shared strains, and its high prevalence was also observed in publicly available metagenomes worldwide. Our findings suggest that mode of delivery may play a role in shaping the early colonization of the infant gut microbiota, in particular the colonization of Bacteroidaceae members. IMPORTANCE Our study provides evidence that Bacteroidaceae strains present on infants' skin within 10 min after birth, in meconium samples, and in fecal samples at 3 months of age in vaginally delivered infants are shared with their mothers. Using strain resolution analyses, we identified two strains, belonging to Bacteroides caccae and Phocaeicola vulgatus, as shared between mothers and their infants. Interestingly, the B. caccae strain showed a high prevalence worldwide, while the P. vulgatus strain was less common. Our findings also showed that vaginal delivery was associated with early colonization of Bacteroidaceae members, whereas cesarean section delivery was associated with delayed colonization. Given the potential for these microbes to influence the colonic environment, our results suggest that understanding the bacterial-host relationship at the strain level may have implications for infant health and development later in life.
Assuntos
Bacteroidaceae , Cesárea , Lactente , Humanos , Feminino , Gravidez , Transmissão Vertical de Doenças Infecciosas , Bacteroides/genética , Fezes , Relações Mãe-FilhoRESUMO
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide, seriously endangering human health. Although SARS-CoV-2 had a lower impact on paediatric population, children with COVID-19 have been reported as suffering from gastrointestinal (GI) symptoms at a higher rate than adults. The aim of this work was to evaluate faeces as a source of potential biomarkers of severity in the paediatric population, with an emphasis on intestinal microbiota and faecal immune mediators, trying to identify possible dysbiosis and immune intestinal dysfunction associated with the risk of hospitalization. This study involved 19 patients with COVID-19 under 24 months of age hospitalized during the pandemic at 6 different hospitals in Spain, and it included a comparable age-matched healthy control group (n = 18). Patients and controls were stratified according to their age in two groups: newborns or young infants (from 0 to 3 months old) and toddlers (infants from 6 to 24 months old). To characterize microbial intestinal communities, sequencing with Illumina technology of total 16S rDNA amplicons and internal transcribed spacer (ITS) amplicons of bifidobacteria were used. Faecal calprotectin (FC) and a range of human cytokines, chemokines, and growth factors were measured in faecal samples using ELISA and a multiplex system. Significant reduction in the abundance of sequences belonging to the phylum Actinobacteria was found in those infants with COVID-19, as well as in the Bifidobacteriaceae family. A different pattern of bifidobacteria was observed in patients, mainly represented by lower percentages of Bifidobacterium breve, as compared with controls. In the group of hospitalized young infants, FC was almost absent compared to age-matched healthy controls. A lower prevalence in faecal excretion of immune factors in these infected patients was also observed. CONCLUSION: Hospitalized infants with COVID-19 were depleted in some gut bacteria, such as bifidobacteria, in particular Bifidobacterium breve, which is crucial for the proper establishment of a functional intestinal microbiota, and important for the development of a competent immune system. Our results point to a possible immature immune system at intestine level in young infants infected by SARS-CoV2 requiring hospitalization. WHAT IS KNOWN: ⢠Although SARS-CoV-2 had a lower impact on paediatric population, children with COVID-19 have been reported as suffering from gastrointestinal symptoms at a higher rate than adults. ⢠Changes in microbial composition have been described in COVID-19 adult patients, although studies in children are limited. WHAT IS NEW: ⢠The first evidence that hospitalized infants with COVID-19 during the pandemic had a depletion in bifidobacteria, particularly in Bifidobacterium breve, beneficial gut bacteria in infancy that are crucial for the proper establishment of a competent immune system. ⢠In young infants (under 3 months of age) hospitalized with SARS-CoV2 infection, the aberrant bifidobacterial profile appears to overlap with a poor intestinal immune development as seen by calprotectin and the trend of immunological factors excreted in faeces.
Assuntos
Bifidobacterium , COVID-19 , Adulto , Lactente , Recém-Nascido , Humanos , Pré-Escolar , Bifidobacterium/genética , Disbiose , RNA Viral , SARS-CoV-2 , Fezes/microbiologia , Complexo Antígeno L1 LeucocitárioRESUMO
BACKGROUND: Early infant feeding with intact or extensively hydrolyzed (EH) proteins or free amino acids (AA) may differentially affect intestinal microbiota composition and immune reactivity. This multicenter, double-blind, controlled, parallel-group, pilot study compared stool microbiota from Baseline (1-7 days of age) up to 60 days of age in healthy term infants who received mother's own milk (assigned to human milk [HM] reference group) (n = 25) or were randomized to receive one of two infant formulas: AA-based (AAF; n = 25) or EH cow's milk protein (EHF; n = 28). Stool samples were collected (Baseline, Day 30, Day 60) and 16S rRNA genes were sequenced. Alpha (Shannon, Simpson, Chao1) and beta diversity (Bray Curtis) were analyzed. Relative taxonomic enrichment and fold changes were analyzed (Wilcoxon, DESEq2). Short/branched chain fatty acids (S/BCFA) were quantified by gas chromatography. Mean S/BCFA and pH were analyzed (repeated measures ANOVA). RESULTS: At baseline, alpha diversity measures were similar among all groups; however, both study formula groups were significantly higher versus the HM group by Day 60. Significant group differences in beta diversity at Day 60 were also detected, and study formula groups were compositionally more similar compared to HM. The relative abundance of Bifidobacterium increased over time and was significantly enriched at Day 60 in the HM group. In contrast, a significant increase in members of Firmicutes for study formula groups were detected at Day 60 along with butyrate-producing species in the EHF group. Stool pH was significantly higher in the AAF group at Days 30 and 60. Butyrate increased significantly from Baseline to Day 60 in the EHF group and was significantly higher in study formula groups vs HM at Day 60. Propionate was also significantly higher for EHF and AAF at Day 30 and AAF at Day 60 vs HM. Total and individual BCFA were higher for AAF and EHF groups vs HM through Day 60. CONCLUSIONS: Distinct patterns of early neonatal microbiome, pH, and microbial metabolites were demonstrated for infants receiving mother's own milk compared to AA-based or extensively hydrolyzed protein formula. Providing different sources of dietary protein early in life may influence gut microbiota and metabolites. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02500563 . Registered July 28, 2015.
Assuntos
Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Aminoácidos/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas Alimentares/análise , Método Duplo-Cego , Ácidos Graxos Voláteis/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Fórmulas Infantis/química , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Leite Humano/química , Projetos Piloto , RNA Ribossômico 16S/genéticaRESUMO
The gut microbiota of infants changes over time and is affected by various factors during early life. However, rarely have studies explored the gut microbiota development and affecting factors in the Chinese infant population. We enrolled 102 infants and collected stool samples from them at birth, 42 days, 3 mo, and 6 mo after delivery to characterize the microbiota signatures and the effects of different factors that modulate the gut microbiota diversity, composition, and function over time. DNA extracted from the bacteria in the stool samples was subjected to high-throughput sequencing and bioinformatics analysis. Microbial richness and diversity increased significantly during the first 6 mo of life. Beneficial microbes such as Bifidobacterium, Lactobacillus, and Blautia were found to be increased in the infant's gut at 6 mo, while pathological bacteria such as Escherichia-Shigella, Enterobacter, Staphylococcus, and Klebsiella decreased over time. The changes in the infant delivery mode and infant-feeding mode only produced changes in the microbial composition, whereas changes in bacterial richness, diversity and effects sizes on the microbial architecture were all time dependent. A comparison of infant delivery modes conveyed a decrease in abundance of Bacteroidetes over time in the gut of infants born via C-section, while the Bifidobacterium was the most dominant genus in the vaginal delivery group. The gut microbiota of infants changed extensively during the first 6 mo of life. Delivery and feeding modes were strong factors that significantly affected microbial architecture and functions.
Assuntos
Alimentação com Mamadeira , Aleitamento Materno , Microbioma Gastrointestinal/genética , Parto/fisiologia , Bacteroidetes/genética , Bifidobacterium/genética , Cesárea , China , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Estudos ProspectivosRESUMO
Our gut microbiome plays a fundamental role in our health and disease. The microbial colonization of human gut begins immediately at birth and is an indispensable natural process that modulates our physiology and immunity. Recent studies are elegantly revealing how and when these microbes colonize the gut and what elements could potentially influence this natural phenomenon. The vertical mother-to-baby transmission of microbes is a crucial factor for normal development and maturation of newborn's immune, metabolic as well as neurological health. This important and delicate process of gut microbiota development may be impacted by various factors such as birth mode, type of feeding, gestational age at birth, antibiotics exposure in early life, surrounding environment and hygiene settings, and so on. Perturbations in early life gut microbial colonization have been associated with the development of several diseases such as diabetes, obesity, asthma, allergies, celiac disease, neurodevelopmental disorders, and so on. However, it remains unclear whether predisposition to these diseases is due to the lack of acquisition of the mother's (vaginal and perianal) microbes during birth or because of abnormal exposure to unsolicited bacteria. Hence, studies are required to scrutinize the colonization pattern of infant gut microbiome in context to birth mode and also to elucidate how long these differences could persist. In these contexts, we review and discuss some of the findings obtained from recent investigation of the gut microbiota composition in healthy Japanese infants and young adults born vaginally or by C-section.
Assuntos
Cesárea , Microbioma Gastrointestinal , Bactérias/classificação , Parto Obstétrico , Feminino , Humanos , Recém-Nascido , Japão , Gravidez , Vagina/microbiologia , Adulto JovemRESUMO
Introduction: The short-chain fatty acids (SCFAs) contained in breast milk play a key role in infant growth, affecting metabolism and enhancing intestinal immunity by regulating inflammation. Methods: In order to examine the associations between the microbiota and SCFA levels in breast milk, and explore the roles of SCFAs in regulating the infant gut microbiota, we enrolled 50 paired mothers and infants and collected both breast milk and infant fecal samples. Breast milk SCFA contents were determined by UPLC-MS, and whole genome shotgun sequencing was applied to determine the microbial composition of breast milk and infant feces. The SCFA levels in breast milk were grouped into tertiles as high, medium, or low, and the differences of intestinal microbiota and KEGG pathways were compared among groups. Results: The results demonstrated that breast milk butyric acid (C4) is significantly associated with Clostridium leptum richness in breastmilk. Additionally, the specific Bifidobacterium may have an interactive symbiosis with the main species of C4-producing bacteria in human milk. Women with a low breast milk C4 tertile are associated with a high abundance of Salmonella and Salmonella enterica in their infants' feces. KEGG pathway analysis further showed that the content of C4 in breast milk is significantly correlated with the infants' metabolic pathways of lysine and arginine biosynthesis. Discussion: This study suggests that interactive symbiosis of the microbiota exists in breast milk. Certain breast milk microbes could be beneficial by producing C4 and further influence the abundance of certain gut microbes in infants, playing an important role in early immune and metabolic development.
RESUMO
Breastfeeding provides the ideal nutrition for infants. Human milk contains a plethora of functional ingredients which foster the development of the immune system. The human milk microbiota predominantly contributes to this protective effect. This is mediated by various mechanisms, such as an antimicrobial effect, pathogen exclusion and barrier integrity, beneficial effects on the gastrointestinal microbiota, vitamin synthesis, immunity enhancement, secreted probiotic factors, and postbiotic mechanisms. Therefore, human milk is a good source for isolating probiotics for infants who cannot be exclusively breastfed. One such probiotic which was isolated from human milk is Limosilactobacillus fermentum CECT5716. In this review, we give an overview of available interventional studies using Limosilactobacillus fermentum CECT5716 and summarise preclinical trials in several animal models of different pathologies, which have given first insights into its mechanisms of action. We present several randomised clinical studies, which have been conducted to investigate the clinical efficacy of the Limosilactobacillus fermentum CECT5716 strain in supporting the host's health.
Assuntos
Limosilactobacillus fermentum , Probióticos , Animais , Lactente , Feminino , Humanos , Leite Humano , Aleitamento Materno , Transporte BiológicoRESUMO
The human intestinal microbiota starts to form immediately after birth and is important for the health of the host. During the first days, facultatively anaerobic bacterial species generally dominate, such as Enterobacteriaceae. These are succeeded by strictly anaerobic species, particularly Bifidobacterium species. An early transition to Bifidobacterium species is associated with health benefits; for example, Bifidobacterium species repress growth of pathogenic competitors and modulate the immune response. Succession to Bifidobacterium is thought to be due to consumption of intracolonic oxygen present in newborns by facultative anaerobes, including Enterobacteriaceae. To study if oxygen depletion suffices for the transition to Bifidobacterium species, here we introduced a multiscale mathematical model that considers metabolism, spatial bacterial population dynamics, and cross-feeding. Using publicly available metabolic network data from the AGORA collection, the model simulates ab initio the competition of strictly and facultatively anaerobic species in a gut-like environment under the influence of lactose and oxygen. The model predicts that individual differences in intracolonic oxygen in newborn infants can explain the observed individual variation in succession to anaerobic species, in particular Bifidobacterium species. Bifidobacterium species became dominant in the model by their use of the bifid shunt, which allows Bifidobacterium to switch to suboptimal yield metabolism with fast growth at high lactose concentrations, as predicted here using flux balance analysis. The computational model thus allows us to test the internal plausibility of hypotheses for bacterial colonization and succession in the infant colon. IMPORTANCE The composition of the infant microbiota has a great impact on infant health, but its controlling factors are still incompletely understood. The frequently dominant anaerobic Bifidobacterium species benefit health, e.g., they can keep harmful competitors under control and modulate the intestinal immune response. Controlling factors could include nutritional composition and intestinal mucus composition, as well as environmental factors, such as antibiotics. We introduce a modeling framework of a metabolically realistic intestinal microbial ecology in which hypothetical scenarios can be tested and compared. We present simulations that suggest that greater levels of intraintestinal oxygenation more strongly delay the dominance of Bifidobacterium species, explaining the observed variety of microbial composition and demonstrating the use of the model for hypothesis generation. The framework allowed us to test a variety of controlling factors, including intestinal mixing and transit time. Future versions will also include detailed modeling of oligosaccharide and mucin metabolism.
Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Humanos , Recém-Nascido , Anaerobiose , Lactose/metabolismo , Bifidobacterium , Bactérias , EnterobacteriaceaeRESUMO
Human milk oligosaccharides (HMOs) are a unique class of non-digestible carbohydrates present in the mother milk, which play a key role in the development of infant gut microbiota, epithelial barrier and immune function. The deficiency of HMOs in the bovine milk-based infant formula has been widely recognized as a major culprit for the much higher incidence of immune disorders of formula-fed infants. This report was to give an up-to-date review on the structure characteristics of HMOs and the possible mechanisms, and strategies for their cellular uptake, and metabolism by the gut bacteria and the associated effects on the infant gut microbiome, and immune function. Most previous studies have been carried out in animals or in vitro model systems on the utilization strategies for HMOs in infant bacteria and their roles in infant microbiome, and gut immune function. A few HMO molecules have been synthesized artificially and applied in infant formulas.
Assuntos
Microbioma Gastrointestinal , Imunidade , Leite Humano/química , Oligossacarídeos/química , Animais , Bactérias/metabolismo , Humanos , Lactente , Fórmulas Infantis/química , Saúde do Lactente , Recém-Nascido , Microbiota , Leite Humano/metabolismo , Estrutura Molecular , Oligossacarídeos/metabolismoRESUMO
Introduction: Long-chain fatty acids in breast milk are affected by the mother's diet and play an important role in the growth, development, and immune construction of infants. This study aims to explore the correlation between maternal diet, breast milk fatty acids (FAs), and the infant intestinal flora. Methods: We enrolled 56 paired mothers and their infants; both breast milk samples and infants' fecal samples were collected to determine the long-chain FA content of breast milk by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS), and metagenomic technology was applied to determine the microbial composition of infant feces. The maternal diet was also investigated using a 24-h dietary recall. Results: The results indicated that the fat contribution rates of edible oils in the maternal diet are significantly positively correlated with the contents of certain long-chain fatty acids (C16:0, C18:1, C16:1, and C22:4) in breast milk, which mainly regulate the abundance of Lacticaseibacillus rhamnosus, Lacticaseibacillus fermentum, and Lacticaseibacillus paracasei in the infant gut. Through KEGG pathway analysis, our data revealed that the long-chain FAs in different groups of breast milk were significantly correlated with the pathways of biotin metabolism, glycerolipid metabolism, and starch and sucrose metabolism. Discussion: The results of this study suggest a pathway in which the diets of lactating mothers may affect the composition of the infant intestinal microbiota by influencing breast milk FAs and then further regulating infant health.
RESUMO
The gut is inhabited by a densely populated ecosystem, the gut microbiota, that is established at birth. However, the succession by which different bacteria are incorporated into the gut microbiota is still relatively unknown. Here, we analyze the microbiota from 471 Swedish children followed from birth to 5 years of age, collecting samples after 4 and 12 months and at 3 and 5 years of age as well as from their mothers at birth using 16S rRNA gene profiling. We also compare their microbiota to an adult Swedish population. Genera follow 4 different colonization patterns during establishment where Methanobrevibacter and Christensenellaceae colonize late and do not reached adult levels at 5 years. These late colonizers correlate with increased alpha diversity in both children and adults. By following the children through age-specific community types, we observe that children have individual dynamics in the gut microbiota development trajectory.
Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Bactérias/genética , Desenvolvimento Infantil , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino , Suécia , Adulto JovemRESUMO
The association of the human microbiome with health outcomes has attracted much interest toward its therapeutic manipulation. The likelihood of modulating the human microbiome in early life is high and offers great potential to exert profound effects on human development since the early microbiota shows more flexibility compared to that of adults. The human microbiota, being similar to human genetics, can be transmitted from mother to infant, providing insights into early microbiota acquisition, subsequent development, and potential opportunities for intervention. Here, we review adaptations of the maternal microbiota during pregnancy, birth, and infancy, the acquisition and succession of early-life microbiota, and highlight recent efforts to elucidate mother-to-infant microbiota transmission. We further discuss how the mother-to-infant microbial transmission is shaped; and finally we address potential directions for future studies to promote our understanding within this field.
Assuntos
Transmissão Vertical de Doenças Infecciosas , Microbiota/fisiologia , Adulto , Dieta , Feminino , Microbioma Gastrointestinal , Humanos , Lactente , Leite Humano/microbiologia , Mães , Micobioma , Gravidez , Probióticos , VaginaRESUMO
BACKGROUND: Post-natal gut maturation in infants interrelates maturation of the morphology, digestive, and immunological functions and gut microbiota development. Here, we explored both microbiota development and markers of gut barrier and maturation in healthy term infants during their early life to assess the interconnection of gut functions during different infant formulae regimes. METHODS: A total of 203 infants were enrolled in this randomized double-blind controlled trial including a breastfed reference group. Infants were fed starter formulae for the first four weeks of life, supplemented with different combination of nutrients (lactoferrin, probiotics (Bifidobacterium animal subsp. Lactis) and prebiotics (Bovine Milk-derived Oligosaccharides-BMOS)) and subsequently fed the control formula up to eight weeks of life. Stool microbiota profiles and biomarkers of early gut maturation, calprotectin (primary outcome), elastase, α-1 antitrypsin (AAT) and neopterin were measured in feces at one, two, four, and eight weeks. RESULTS: Infants fed formula containing BMOS had lower mean calprotectin levels over the first two to four weeks compared to the other formula groups. Elastase and AAT levels were closer to levels observed in breastfed infants. No differences were observed for neopterin. Global differences between the bacterial communities of all groups were assessed by constrained multivariate analysis with hypothesis testing. The canonical correspondence analysis (CCA) at genus level showed overlap between microbiota profiles at one and four weeks of age in the BMOS supplemented formula group with the breastfed reference, dominated by bifidobacteria. Microbiota profiles of all groups at four weeks were significantly associated with the calprotectin levels at 4 (CCA, p = 0.018) and eight weeks of age (CCA, p = 0.026). CONCLUSION: A meaningful correlation was observed between changes in microbiota composition and gut maturation marker calprotectin. The supplementation with BMOS seems to favor gut maturation closer to that of breastfed infants.
Assuntos
Biomarcadores , Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Fórmulas Infantis/análise , Animais , Bifidobacterium animalis , Aleitamento Materno , Método Duplo-Cego , Fezes/microbiologia , Humanos , Lactente , Complexo Antígeno L1 Leucocitário , Leite , Oligossacarídeos/análise , Prebióticos/análise , Probióticos/análiseRESUMO
National guidelines suggest that pregnant women consume 2-3 servings of fish weekly and often focus exclusively on limiting mercury exposure. We examined if meeting this recommendation in the third trimester of pregnancy was associated with differences in infant fecal microbiota composition and diversity. We used multinomial regression to analyze data from 114 infant-mother dyads. Applying 16S rRNA gene sequencing, we identified 3 infant fecal microbiota profiles: Bifidobacterium dominant, Enterobacter dominant, and Escherichia dominant. We found that 20% of mothers met the recommended fish consumption, and those infants whose mothers met the recommendation were more likely to have a Bifidobacterium-dominant profile than an Escherichia-dominant profile (RR ratio: 4.61; 95% CI: 1.40, 15.15; P = 0.01). In multivariable models, the significant association persisted (P < 0.05). Our findings support the need to expand recommendations focusing on the beneficial effects of fish consumption on the infant fecal microbiota profile.
RESUMO
The perinatal period is crucial to the establishment of lifelong gut microbiota. The abundance and composition of microbiota can be altered by several factors such as preterm delivery, formula feeding, infections, antibiotic treatment, and lifestyle during pregnancy. Gut dysbiosis affects the development of innate and adaptive immune responses and resistance to pathogens, promoting atopic diseases, food sensitization, and infections such as necrotizing enterocolitis (NEC). Recent studies have indicated that the gut microbiota imbalance can be restored after a single or multi-strain probiotic supplementation, especially mixtures of Lactobacillus and Bifidobacterium strains. Following the systematic search methodology, the current review addresses the importance of probiotics as a preventive or therapeutic tool for dysbiosis produced during the perinatal and infant period. We also discuss the safety of the use of probiotics in pregnant women, preterm neonates, or infants for the treatment of atopic diseases and infections.
Assuntos
Disbiose/prevenção & controle , Microbioma Gastrointestinal , Doenças do Recém-Nascido/prevenção & controle , Assistência Perinatal/métodos , Probióticos/uso terapêutico , Disbiose/microbiologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Feminino , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/microbiologia , MasculinoRESUMO
Human milk is a unique and complex fluid that provides infant nutrition and delivers an array of bioactive molecules that serve various functions. Glycans, abundant in milk, can be found as free oligosaccharides or as glycoconjugates. Milk glycans are increasingly linked to beneficial outcomes in neonates through protection from pathogens and modulation of the immune system. Indeed, these glycans influence the development of the infant and the infant-gut microbiota. Bifidobacterium species commonly are enriched in breastfed infants and are among a limited group of bacteria that readily consume human milk oligosaccharides (HMOs) and milk glycoconjugates. Given the importance of bifidobacteria in infant health, numerous studies have examined the molecular mechanisms they employ to consume HMOs and milk glycans, thus providing insight into this unique enrichment and shedding light on a range of translational opportunities to benefit at-risk infants.
Assuntos
Microbioma Gastrointestinal , Leite Humano/química , Leite/química , Polissacarídeos/metabolismo , Animais , Bifidobacterium/metabolismo , Aleitamento Materno , Configuração de Carboidratos , Bovinos , Suplementos Nutricionais , Glicoconjugados/metabolismo , Humanos , Recém-Nascido , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Relação Estrutura-AtividadeRESUMO
Nucleotides (NT) and nucleosides (NS) are added to infant formula to mimic the content of breast milk, but little is known about their impact on infant gut microbiota. In this study, we tested the effect of NS and of yeast extracts (YE) with different NT content using PolyFermS continuous fermentation models mimicking formula-fed, healthy and enteropathogen-contaminated infant gut microbiota. Microbiota composition, short-chain fatty acid (SCFA) formation and gene expression were determined. NS, and to a larger extend YE modulated microbiota composition and increased metabolic activity in both models. Anaerococcus, Peptoniphilus, Fusobacterium, Lactobacillus/Pediococcus/Leuconostoc and Veillonella were enhanced when YE and/or NS were added. The production of SCFA increased with the level of supplied NT equivalents. Addition of NS and YE reduced colonization of Salmonella compared to control periods. Gene expression analysis confirmed taxonomical changes and indicated functional responses to YE. Transcripts related to NT and sulfur metabolism and iron acquisition increased while biosynthesis of co-factors and vitamins decreased after YE addition. Elevated butyrate formation correlated with increased transcripts encoding key enzymes of the two major butyrate synthesis pathways. Our results uncover a strong dose-dependent modulation of NS and YE on infant gut microbiota composition and metabolic activity.
Assuntos
Bactérias/crescimento & desenvolvimento , Extratos Celulares/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Fórmulas Infantis/análise , Nucleosídeos/administração & dosagem , Nucleotídeos/administração & dosagem , Bactérias/efeitos dos fármacos , Butiratos/metabolismo , Extratos Celulares/farmacologia , Colo/microbiologia , Dieta , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Lactente , Recém-Nascido , Leite Humano/química , Leite Humano/microbiologia , Nucleosídeos/farmacologia , Nucleotídeos/farmacologiaRESUMO
The intestinal microbiota influences immune maturation during childhood, and is implicated in early-life allergy development. However, to directly study intestinal microbes and gut immune responses in infants is difficult. To investigate how different types of early-life gut microbiota affect immune development, we collected fecal samples from children with different allergic heredity (AH) and inoculated germ-free mice. Immune responses and microbiota composition were evaluated in the offspring of these mice. Microbial composition in the small intestine, the cecum and the colon were determined by 16S rRNA sequencing. The intestinal microbiota differed markedly between the groups of mice, but only exposure to microbiota associated with AH and known future allergy in children resulted in a T helper 17 (Th17)-signature, both systemically and in the gut mucosa in the mouse offspring. These Th17 responses could be signs of a particular microbiota and a shift in immune development, ultimately resulting in an increased risk of allergy.