Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257708

RESUMO

Vehicle re-identification holds great significance for intelligent transportation and public safety. Extracting vehicle recognition information from multi-view vehicle images has become one of the challenging problems in the field of vehicle recognition. Most recent methods employ a single network extraction structure, either a single global or local measure. However, for vehicle images with high intra-class variance and low inter-class variance, exploring globally invariant features and discriminative local details is necessary. In this paper, we propose a Feature Fusion Network (GLFNet) that combines global and local information. It utilizes global features to enhance the differences between vehicles and employs local features to compactly represent vehicles of the same type. This enables the model to learn features with a large inter-class distance and small intra-class distance, significantly improving the model's generalization ability. Experiments show that the proposed method is competitive with other advanced algorithms on three mainstream road traffic surveillance vehicle re-identification benchmark datasets.

2.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339476

RESUMO

Two-wheeled non-motorized vehicles (TNVs) have become the primary mode of transportation for short-distance travel among residents in many underdeveloped cities in China due to their convenience and low cost. However, this trend also brings corresponding risks of traffic accidents. Therefore, it is necessary to analyze the driving behavior characteristics of TNVs through their trajectory data in order to provide guidance for traffic safety. Nevertheless, the compact size, agile steering, and high maneuverability of these TNVs pose substantial challenges in acquiring high-precision trajectories. These characteristics complicate the tracking and analysis processes essential for understanding their movement patterns. To tackle this challenge, we propose an enhanced You Only Look Once Version X (YOLOx) model, which incorporates a median pooling-Convolutional Block Attention Mechanism (M-CBAM). This model is specifically designed for the detection of TNVs, and aims to improve accuracy and efficiency in trajectory tracking. Furthermore, based on this enhanced YOLOx model, we have developed a micro-trajectory data mining framework specifically for TNVs. Initially, the paper establishes an aerial dataset dedicated to the detection of TNVs, which then serves as a foundational resource for training the detection model. Subsequently, an augmentation of the Convolutional Block Attention Mechanism (CBAM) is introduced, integrating median pooling to amplify the model's feature extraction capabilities. Subsequently, additional detection heads are integrated into the YOLOx model to elevate the detection rate of small-scale targets, particularly focusing on TNVs. Concurrently, the Deep Sort algorithm is utilized for the precise tracking of vehicle targets. The process culminates with the reconstruction of trajectories, which is achieved through a combination of video stabilization, coordinate mapping, and filtering denoising techniques. The experimental results derived from our self-constructed dataset reveal that the enhanced YOLOx model demonstrates superior detection performance in comparison to other analogous methods. The comprehensive framework accomplishes an average trajectory recall rate of 85% across three test videos. This significant achievement provides a reliable method for data acquisition, which is essential for investigating the micro-level operational mechanisms of TNVs. The results of this study can further contribute to the understanding and improvement of traffic safety on mixed-use roads.

3.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257430

RESUMO

Reconfigurable intelligent surfaces (RIS) are expected to bring about a revolutionary transformation in vehicular networks, thus paving the way for a future characterized by connected and automated vehicles (CAV). An RIS is a planar structure comprising many passive elements that can dynamically manipulate electromagnetic waves to enhance wireless communication by reflecting, refracting, and focusing signals in a programmable manner. RIS exhibits substantial potential for improving vehicle-to-everything (V2X) communication through various means, including coverage enhancement, interference mitigation, improving signal strength, and providing additional layers of privacy and security. This article presents a comprehensive survey that explores the emerging opportunities arising from the integration of RIS into vehicular networks. To examine the convergence of RIS and V2X communications, the survey adopted a holistic approach, thus highlighting the potential benefits and challenges of this combination. In this study, we examined several applications of RIS-aided V2X communication. Subsequently, we delve into the fundamental emerging technologies that are expected to empower vehicular networks, encompassing mobile edge computing (MEC), non-orthogonal multiple access (NOMA), millimeter-wave communication (mmWave), Artificial Intelligence (AI), and visible light communication (VLC). Finally, to stimulate further research in this domain, we emphasize noteworthy research challenges and potential avenues for future exploration.

4.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474923

RESUMO

Risky driving is a major factor in traffic incidents, necessitating constant monitoring and prevention through Intelligent Transportation Systems (ITS). Despite recent progress, a lack of suitable data for detecting risky driving in traffic surveillance settings remains a significant challenge. To address this issue, Bayonet-Drivers, a pioneering benchmark for risky driving detection, is proposed. The unique challenge posed by Bayonet-Drivers arises from the nature of the original data obtained from intelligent monitoring and recording systems, rather than in-vehicle cameras. Bayonet-Drivers encompasses a broad spectrum of challenging scenarios, thereby enhancing the resilience and generalizability of algorithms for detecting risky driving. Further, to address the scarcity of labeled data without compromising detection accuracy, a novel semi-supervised network architecture, named DGMB-Net, is proposed. Within DGMB-Net, an enhanced semi-supervised method founded on a teacher-student model is introduced, aiming at bypassing the time-consuming and labor-intensive tasks associated with data labeling. Additionally, DGMB-Net has engineered an Adaptive Perceptual Learning (APL) Module and a Hierarchical Feature Pyramid Network (HFPN) to amplify spatial perception capabilities and amalgamate features at varying scales and levels, thus boosting detection precision. Extensive experiments on widely utilized datasets, including the State Farm dataset and Bayonet-Drivers, demonstrated the remarkable performance of the proposed DGMB-Net.

5.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257689

RESUMO

Visible Light Communication (VLC) has recently emerged as an alternative to RF-based wireless communications. VLC for vehicles has demonstrated its potential for Intelligent Transportation Systems (ITSs) to exchange information between vehicles and infrastructure to achieve ITS core goals, such as improving road safety, passenger comfort, and traffic flow. This paper seeks to provide a detailed survey of vehicular VLC systems. This paper presents an overview of current developments in vehicular VLC systems and their benefits and limitations for experienced researchers and newcomers.

6.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005614

RESUMO

The use of cloud computing, big data, IoT, and mobile applications in the public transportation industry has resulted in the generation of vast and complex data, of which the large data volume and data variety have posed several obstacles to effective data sensing and processing with high efficiency in a real-time data-driven public transportation management system. To overcome the above-mentioned challenges and to guarantee optimal data availability for data sensing and processing in public transportation perception, a public transportation sensing platform is proposed to collect, integrate, and organize diverse data from different data sources. The proposed data perception platform connects multiple data systems and some edge intelligent perception devices to enable the collection of various types of data, including traveling information of passengers and transaction data of smart cards. To enable the efficient extraction of precise and detailed traveling behavior, an efficient field-level data lineage exploration method is proposed during logical plan generation and is integrated into the FlinkSQL system seamlessly. Furthermore, a row-level fine-grained permission control mechanism is adopted to support flexible data management. With these two techniques, the proposed data management system can support efficient data processing on large amounts of data and conducts comprehensive analysis and application of business data from numerous different sources to realize the value of the data with high data safety. Through operational testing in real environments, the proposed platform has proven highly efficient and effective in managing organizational operations, data assets, data life cycle, offline development, and backend administration over a large amount of various types of public transportation traffic data.

7.
Sensors (Basel) ; 23(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571565

RESUMO

This paper develops a novel approach for reliable vehicle-to-vehicle (V2V) communication in various environments. A switched beam antenna is deployed at the transmitting and receiving points, with a beam management system that concentrates the power in each beam using a low-computation algorithm and a potential mathematical model. The algorithm is designed to be flexible for various environments faced by vehicles. Additionally, an anti-failure system is proposed in case the intelligent transportation system (ITS) system fails to retrieve real-time Packet Delivery Ratio (PDR) values related to traffic density. Performance metrics include the time to collision in seconds, the bit error rate (BER), the packet error rate (PER), the average throughput (Mbps), the beam selection probability, and computational complexity factors. The proposed system is compared with traditional systems. Extensive experiments, simulations, and comparisons show that the proposed approach is excellent and reliable for vehicular systems. The proposed study demonstrates an average throughput of 1.7 Mbps, surpassing conventional methods' typical throughput of 1.35 Mbps. Moreover, the bit error rate (BER) of the proposed study is reduced by a factor of 0.1. Additionally, the proposed framework achieves a beam power efficiency of touching to 100% at computational factor of 34. These metrics indicate that the proposed method is both efficient and sufficiently robust.

8.
Sensors (Basel) ; 23(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299734

RESUMO

This study describes an applied and enhanced real-time vehicle-counting system that is an integral part of intelligent transportation systems. The primary objective of this study was to develop an accurate and reliable real-time system for vehicle counting to mitigate traffic congestion in a designated area. The proposed system can identify and track objects inside the region of interest and count detected vehicles. To enhance the accuracy of the system, we used the You Only Look Once version 5 (YOLOv5) model for vehicle identification owing to its high performance and short computing time. Vehicle tracking and the number of vehicles acquired used the DeepSort algorithm with the Kalman filter and Mahalanobis distance as the main components of the algorithm and the proposed simulated loop technique, respectively. Empirical results were obtained using video images taken from a closed-circuit television (CCTV) camera on Tashkent roads and show that the counting system can produce 98.1% accuracy in 0.2408 s.


Assuntos
Algoritmos , Sistemas Computacionais , Inteligência
9.
Sensors (Basel) ; 23(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37300051

RESUMO

Emergency Management System (EMS) is an important component of Intelligent transportation systems, and its primary objective is to send Emergency Vehicles (EVs) to the location of a reported incident. However, the increasing traffic in urban areas, especially during peak hours, results in the delayed arrival of EVs in many cases, which ultimately leads to higher fatality rates, increased property damage, and higher road congestion. Existing literature addressed this issue by giving higher priority to EVs while traveling to an incident place by changing traffic signals (e.g., making the signals green) on their travel path. A few works have also attempted to find the best route for an EV using traffic information (e.g., number of vehicles, flow rate, and clearance time) at the beginning of the journey. However, these works did not consider congestion or disruption faced by other non-emergency vehicles adjacent to the EV travel path. The selected travel paths are also static and do not consider changing traffic parameters while EVs are en route. To address these issues, this article proposes an Unmanned Aerial Vehicle (UAV) guided priority-based incident management system to assist EVs in obtaining a better clearance time in intersections and thus achieve a lower response time. The proposed model also considers disruption faced by other surrounding non-emergency vehicles adjacent to the EVs' travel path and selects an optimal solution by controlling the traffic signal phase time to ensure that EVs can reach the incident place on time while causing minimal disruption to other on-road vehicles. Simulation results indicate that the proposed model achieves an 8% lower response time for EVs while the clearance time surrounding the incident place is improved by 12%.


Assuntos
Serviços Médicos de Emergência , Meios de Transporte , Ambulâncias , Viagem , Simulação por Computador
10.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904873

RESUMO

License Plate Recognition (LPR) is essential for the Internet of Vehicles (IoV) since license plates are a necessary characteristic for distinguishing vehicles for traffic management. As the number of vehicles on the road continues to grow, managing and controlling traffic has become increasingly complex. Large cities in particular face significant challenges, including concerns around privacy and the consumption of resources. To address these issues, the development of automatic LPR technology within the IoV has emerged as a critical area of research. By detecting and recognizing license plates on roadways, LPR can significantly enhance management and control of the transportation system. However, implementing LPR within automated transportation systems requires careful consideration of privacy and trust issues, particularly in relation to the collection and use of sensitive data. This study recommends a blockchain-based approach for IoV privacy security that makes use of LPR. A system handles the registration of a user's license plate directly on the blockchain, avoiding the gateway. The database controller may crash as the number of vehicles in the system rises. This paper proposes a privacy protection system for the IoV using license plate recognition based on blockchain. When a license plate is captured by the LPR system, the captured image is sent to the gateway responsible for managing all communications. When the user requires the license plate, the registration is done by a system connected directly to the blockchain, without going through the gateway. Moreover, in the traditional IoV system, the central authority has full authority to manage the binding of vehicle identity and public key. As the number of vehicles increases in the system, it may cause the central server to crash. Key revocation is the process in which the blockchain system analyses the behaviour of vehicles to judge malicious users and revoke their public keys.

11.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904951

RESUMO

Quantum machine learning (QML) has attracted significant research attention over the last decade. Multiple models have been developed to demonstrate the practical applications of the quantum properties. In this study, we first demonstrate that the previously proposed quanvolutional neural network (QuanvNN) using a randomly generated quantum circuit improves the image classification accuracy of a fully connected neural network against the Modified National Institute of Standards and Technology (MNIST) dataset and the Canadian Institute for Advanced Research 10 class (CIFAR-10) dataset from 92.0% to 93.0% and from 30.5% to 34.9%, respectively. We then propose a new model referred to as a Neural Network with Quantum Entanglement (NNQE) using a strongly entangled quantum circuit combined with Hadamard gates. The new model further improves the image classification accuracy of MNIST and CIFAR-10 to 93.8% and 36.0%, respectively. Unlike other QML methods, the proposed method does not require optimization of the parameters inside the quantum circuits; hence, it requires only limited use of the quantum circuit. Given the small number of qubits and relatively shallow depth of the proposed quantum circuit, the proposed method is well suited for implementation in noisy intermediate-scale quantum computers. While promising results were obtained by the proposed method when applied to the MNIST and CIFAR-10 datasets, a test against a more complicated German Traffic Sign Recognition Benchmark (GTSRB) dataset degraded the image classification accuracy from 82.2% to 73.4%. The exact causes of the performance improvement and degradation are currently an open question, prompting further research on the understanding and design of suitable quantum circuits for image classification neural networks for colored and complex data.

12.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687858

RESUMO

Route guidance strategies are an important part of advanced traveler information systems, which are a subsystem of intelligent transportation systems (ITSs). In previous research, many scholars have proposed a variety of route guidance strategies to guide vehicles in order to relieve traffic congestion, but few scholars have considered a strategy to control transportation infrastructure. In this paper, to cope with tidal traffic, we propose a dynamic lane reversal strategy (DLRS) based on the density of congestion clusters over the total road region. When the density reaches 0.37, the reversible lane converts to the opposite direction. When the density falls off to below 0.22, the reversible lane returns back to the conventional direction. The simulation results show that the DLRS has better adaptability for coping with the fluctuation in tidal traffic.

13.
Sensors (Basel) ; 23(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631673

RESUMO

In recent years, the research on object detection and tracking is becoming important for the development of advanced driving assistance systems (ADASs) and connected autonomous vehicles (CAVs) aiming to improve safety for all road users involved. Intersections, especially in urban scenarios, represent the portion of the road where the most relevant accidents take place; therefore, this work proposes an I2V warning system able to detect and track vehicles occupying the intersection and representing an obstacle for other incoming vehicles. This work presents a localization algorithm based on image detection and tracking by a single camera installed on a roadside unit (RSU). The vehicle position in the global reference frame is obtained thanks to a sequence of linear transformations utilizing intrinsic camera parameters, camera height, and pitch angle to obtain the vehicle's distance from the camera and, thus, its global latitude and longitude. The study brings an experimental analysis of both the localization accuracy, with an average error of 0.62 m, and detection reliability in terms of false positive (1.9%) and missed detection (3.6%) rates.

14.
Sensors (Basel) ; 23(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177756

RESUMO

Public transportation is a crucial component of urban transportation systems, and improving passenger sharing rates can help alleviate traffic congestion. To enhance the punctuality and supply-demand balance of dedicated buses, we propose a hierarchical multi-objective optimization model to optimize bus guidance speeds and bus operation schedules. Firstly, we present an intelligent decision-making method for bus driving speed based on the mathematical description of bus operation states and the application of the Lagrange multiplier method, which improves the overall punctuality rate of the bus line. Secondly, we propose an optimization method for bus operation schedules that respond to passenger needs by optimizing departure time intervals and station schedules for supply-demand balance. The experiments were conducted in Future Science City, Beijing, China. The results show that the bus line's punctuality rate has increased to 90.53%, while the retention rate for platform passengers and the intersection stop rate have decreased by 36.22% and 60.93%, respectively. These findings verify the effectiveness and practicality of the proposed hierarchical multi-objective optimization model.

15.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571472

RESUMO

In intelligent transportation systems, it is essential to estimate the vehicle position accurately. To this end, it is preferred to detect vehicles as a bottom face quadrilateral (BFQ) rather than an axis-aligned bounding box. Although there have been some methods for detecting the vehicle BFQ using vehicle-mounted cameras, few studies have been conducted using surveillance cameras. Therefore, this paper conducts a comparative study on various approaches for detecting the vehicle BFQ in surveillance camera environments. Three approaches were selected for comparison, including corner-based, position/size/angle-based, and line-based. For comparison, this paper suggests a way to implement the vehicle BFQ detectors by simply adding extra heads to one of the most widely used real-time object detectors, YOLO. In experiments, it was shown that the vehicle BFQ can be adequately detected by using the suggested implementation, and the three approaches were quantitatively evaluated, compared, and analyzed.

16.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679565

RESUMO

An intelligent transportation system (ITS) aims to improve traffic efficiency by integrating innovative sensing, control, and communications technologies. The industrial Internet of things (IIoT) and Industrial Revolution 4.0 recently merged to design the industrial Internet of things-intelligent transportation system (IIoT-ITS). IIoT sensing technologies play a significant role in acquiring raw data. The application continuously performs the complex task of managing traffic flows effectively based on several parameters, including the number of vehicles in the system, their location, and time. Traffic density estimation (TDE) is another important derived parameter desirable to keep track of the dynamic state of traffic volume. The expanding number of vehicles based on wireless connectivity provides new potential to predict traffic density more accurately and in real time as previously used methodologies. We explore the topic of assessing traffic density by using only a few simple metrics, such as the number of surrounding vehicles and disseminating beacons to roadside units and vice versa. This research paper investigates TDE techniques and presents a novel Markov model-based TDE technique for ITS. Finally, an OMNET++-based approach with an implementation of a significant modification of a traffic model combined with mathematical modeling of the Markov model is presented. It is intended for the study of real-world traffic traces, the identification of model parameters, and the development of simulated traffic.


Assuntos
Benchmarking , Internet das Coisas , Indústrias , Tecnologia da Informação , Inteligência
17.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408361

RESUMO

Traffic-data recovery plays an important role in traffic prediction, congestion judgment, road network planning and other fields. Complete and accurate traffic data help to find the laws contained in the data more efficiently and effectively. However, existing methods still have problems to cope with the case when large amounts of traffic data are missed. As a generalization of vector algebra, geometric algebra has more powerful representation and processing capability for high-dimensional data. In this article, we are thus inspired to propose the geometric-algebra-based generative adversarial network to repair the missing traffic data by learning the correlation of multidimensional traffic parameters. The generator of the proposed model consists of a geometric algebra convolution module, an attention module and a deconvolution module. Global and local data mean squared errors are simultaneously applied to form the loss function of the generator. The discriminator is composed of a multichannel convolutional neural network which can continuously optimize the adversarial training process. Real traffic data from two elevated highways are used for experimental verification. Experimental results demonstrate that our method can effectively repair missing traffic data in a robust way and has better performance when compared with the state-of-the-art methods.

18.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365966

RESUMO

Magnetic field sensors installed in the road infrastructure can be used for autonomous traffic flow parametrization. Although the main goal of such a measuring system is the recognition of the class of vehicle and classification, velocity is the essential parameter for further calculation and it must be estimated with high reliability. In-field test campaigns, during actual traffic conditions, showed that commonly accepted velocity estimation methods occasionally produce highly erroneous results. For anomaly detection, we propose a criterion and two different correction algorithms. Non-linear signal rescaling and time-based segmentation algorithms are presented and compared for faulty result mitigation. The first one consists of suppressing the highly distorted signal peaks and looking for the best match with cross-correlation. The second approach relies on signals segmentation according to the feature points and multiple cross-correlation comparisons. The proposed two algorithms are evaluated with a dataset of over 300 magnetic signatures of a vehicle from unconstraint traffic conditions. Results show that the proposed criteria highlight all greatly faulty results and that the correction algorithms reduce the maximum error by twofold, but due to the increased mean error, mitigation technics shall be used explicitly with distorted signals.

19.
Sensors (Basel) ; 22(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36016066

RESUMO

Maritime traffic pattern recognition plays a major role in intelligent transportation services, ship monitoring, route planning, and other fields. Facilitated by the establishment of terrestrial networks and satellite constellations of the automatic identification system (AIS), large quantities of spatial and temporal information make ships' paths trackable and are useful in maritime traffic pattern research. The maritime traffic pattern may vary with changes in the traffic environment, so the recognition method of the maritime traffic pattern should be adaptable to changes in the traffic environment. To achieve this goal, a dynamic maritime traffic pattern recognition method is presented using AIS data, which are cleaned, compressed, partitioned, and clustered online. Old patterns are removed as expired trajectories are deleted, and new patterns are created as new trajectories are added. This method is suitable for processing massive stream data. Experiments show that when the marine traffic route changes due to the navigation environment, the maritime traffic pattern adjusts automatically.


Assuntos
Navios , Meios de Transporte , Análise por Conglomerados , Rios
20.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632019

RESUMO

The safety of urban transportation systems is considered a public health issue worldwide, and many researchers have contributed to improving it. Connected automated vehicles (CAVs) and cooperative intelligent transportation systems (C-ITSs) are considered solutions to ensure the safety of urban transportation systems using various sensors and communication devices. However, realizing a data flow framework, including data collection, data transmission, and data processing, in South Korea is challenging, as CAVs produce a massive amount of data every minute, which cannot be transmitted via existing communication networks. Thus, raw data must be sampled and transmitted to the server for further processing. The data acquired must be highly accurate to ensure the safety of the different agents in C-ITS. On the other hand, raw data must be reduced through sampling to ensure transmission using existing communication systems. Thus, in this study, C-ITS architecture and data flow are designed, including messages and protocols for the safety monitoring system of CAVs, and the optimal sampling interval determined for data transmission while considering the trade-off between communication efficiency and accuracy of the safety performance indicators. Three safety performance indicators were introduced: severe deceleration, lateral position variance, and inverse time to collision. A field test was conducted to collect data from various sensors installed in the CAV, determining the optimal sampling interval. In addition, the Kolmogorov-Smirnov test was conducted to ensure statistical consistency between the sampled and raw datasets. The effects of the sampling interval on message delay, data accuracy, and communication efficiency in terms of the data compression ratio were analyzed. Consequently, a sampling interval of 0.2 s is recommended for optimizing the system's overall efficiency.


Assuntos
Reprodutibilidade dos Testes , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA