Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 38(1-2): 11-30, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38182429

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease characterized by loss of motor neurons. Human genetic studies have linked mutations in RNA-binding proteins as causative for this disease. The hnRNPA1 protein, a known pre-mRNA splicing factor, is mutated in some ALS patients. Here, two human cell models were generated to investigate how a mutation in the C-terminal low-complexity domain (LCD) of hnRNPA1 can cause splicing changes of thousands of transcripts that collectively are linked to the DNA damage response, cilium organization, and translation. We show that the hnRNPA1 D262V mutant protein binds to new binding sites on differentially spliced transcripts from genes that are linked to ALS. We demonstrate that this ALS-linked hnRNPA1 mutation alters normal RNA-dependent protein-protein interactions. Furthermore, cells expressing this hnRNPA1 mutant exhibit a cell aggregation phenotype, markedly reduced growth rates, changes in stress granule kinetics, and aberrant growth of neuronal processes. This study provides insight into how a single amino acid mutation in a splicing factor can alter RNA splicing networks of genes linked to ALS.


Assuntos
Esclerose Lateral Amiotrófica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Mutação , Splicing de RNA/genética , Fatores de Processamento de RNA/genética
2.
MethodsX ; 6: 1292-1304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205862

RESUMO

RNA-binding proteins (RBPs) are instrumental in the biochemical processing and physiological functioning of non-coding RNAs. Therefore, as interest in non-coding RNAs continues to expand, refining the techniques capable of probing protein-RNA interactions will prove ever more valuable in the characterization of these molecules. To identify the RNAs bound by a given RBP, cross-linking and immunoprecipitation (CLIP) and its iterations have been widely utilized, but these approaches can be complex, labor-intensive, and time consuming. Here, we describe a rapid and technically simple method based upon individual nucleotide resolution CLIP (iCLIP) and infrared CLIP (irCLIP). Termed quick-irCLIP, our protocol circumvents confounding steps, can be completed in less than three days, and is capable of interrogating protein-RNA interactions at single nucleotide resolution.

3.
Genome Biol ; 18(1): 7, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28093074

RESUMO

BACKGROUND: Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) identifies the sites on RNAs that are in direct contact with RNA-binding proteins (RBPs). Several variants of CLIP exist, which require different computational approaches for analysis. This variety of approaches can create challenges for a novice user and can hamper insights from multi-study comparisons. Here, we produce data with multiple variants of CLIP and evaluate the data with various computational methods to better understand their suitability. RESULTS: We perform experiments for PTBP1 and eIF4A3 using individual-nucleotide resolution CLIP (iCLIP), employing either UV-C or photoactivatable 4-thiouridine (4SU) combined with UV-A crosslinking and compare the results with published data. As previously noted, the positions of complementary DNA (cDNA)-starts depend on cDNA length in several iCLIP experiments and we now find that this is caused by constrained cDNA-ends, which can result from the sequence and structure constraints of RNA fragmentation. These constraints are overcome when fragmentation by RNase I is efficient and when a broad cDNA size range is obtained. Our study also shows that if RNase does not efficiently cut within the binding sites, the original CLIP method is less capable of identifying the longer binding sites of RBPs. In contrast, we show that a broad size range of cDNAs in iCLIP allows the cDNA-starts to efficiently delineate the complete RNA-binding sites. CONCLUSIONS: We demonstrate the advantage of iCLIP and related methods that can amplify cDNAs that truncate at crosslink sites and we show that computational analyses based on cDNAs-starts are appropriate for such methods.


Assuntos
Imunoprecipitação , Proteínas de Ligação a RNA/metabolismo , RNA/genética , RNA/metabolismo , Sítios de Ligação , Biologia Computacional/métodos , DNA Complementar/genética , DNA Complementar/metabolismo , Éxons , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Imunoprecipitação/métodos , Íntrons , Motivos de Nucleotídeos , Ligação Proteica , Ribonuclease Pancreático/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA