Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37948764

RESUMO

Performing phylogenetic analysis with genome sequences maximizes the information used to estimate phylogenies and the resolution of closely related taxa. The use of single-nucleotide polymorphisms (SNPs) permits estimating trees without genome alignments and permits the use of data sets of hundreds of microbial genomes. kSNP4 is a program that identifies SNPs without using a reference genome, estimates parsimony, maximum likelihood, and neighbor-joining trees, and is able to annotate the discovered SNPs. kSNP4 is a command-line program that does not require any additional programs or dependencies to install or use. kSNP4 does not require any programming experience or bioinformatics experience to install and use. It is suitable for use by students through senior investigators. It includes a detailed user guide that explains all of the many features of kSNP4. In this study, we provide a detailed step-by-step protocol for downloading, installing, and using kSNP4 to build phylogenetic trees from genome sequences.


Assuntos
Biologia Computacional , Evolução Molecular , Humanos , Filogenia
2.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33187991

RESUMO

Vibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States. The draft genomes of 132 North American clinical and oyster V. parahaemolyticus isolates were sequenced to investigate their phylogenetic and biogeographic relationships. The majority of oyster isolate sequence types (STs) were from a single harvest location; however, four were identified from multiple locations. There was population structure along the Gulf and Atlantic Coasts of North America, with what seemed to be a hub of genetic variability along the Gulf Coast, with some of the same STs occurring along the Atlantic Coast and one shared between the coastal waters of the Gulf and those of Washington State. Phylogenetic analyses found nine well-supported clades. Two clades were composed of isolates from both clinical and oyster sources. Four were composed of isolates entirely from clinical sources, and three were entirely from oyster sources. Each single-source clade consisted of one ST. Some human isolates lack tdh, trh, and some type III secretion system (T3SS) genes, which are established virulence genes of V. parahaemolyticus Thus, these genes are not essential for pathogenicity. However, isolates in the monophyletic groups from clinical sources were enriched in several categories of genes compared to those from monophyletic groups of oyster isolates. These functional categories include cell signaling, transport, and metabolism. The identification of genes in these functional categories provides a basis for future in-depth pathogenicity investigations of V. parahaemolyticusIMPORTANCEVibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States and is frequently associated with shellfish consumption. This study contributes to our knowledge of the biogeography and functional genomics of this species around North America. STs shared between the Gulf Coast and the Atlantic seaboard as well as Pacific waters suggest possible transport via oceanic currents or large shipping vessels. STs frequently isolated from humans but rarely, if ever, isolated from the environment are likely more competitive in the human gut than other STs. This could be due to additional functional capabilities in areas such as cell signaling, transport, and metabolism, which may give these isolates an advantage in novel nutrient-replete environments such as the human gut.


Assuntos
Vibrio parahaemolyticus/genética , Animais , Monitoramento Biológico , Genes Bacterianos , Genoma Bacteriano , Humanos , América do Norte , Ostreidae/microbiologia , Filogenia , Vibrioses/microbiologia , Vibrio parahaemolyticus/isolamento & purificação , Virulência/genética , Sequenciamento Completo do Genoma
3.
Anim Genet ; 45(4): 559-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24804852

RESUMO

Pithomycotoxicosis, more commonly known as facial eczema (FE), is a liver disease that occurs predominantly in New Zealand because of its toxigenic Pithomyces chartarum strains. The first reported case was in sheep in 1887. Since the 1930s, a number of studies have been conducted in an attempt to mitigate the problems FE has on the sheep and dairy industries. The research in these studies included work on fungicide and biological control of the saprophytic fungus, use of different pasture plants to inhibit fungal growth, stock management with respect to pasture fungal spore counts and the use of zinc prophylaxis on animals. The finding that there was a genetic basis in FE sensitivity in sheep prompted research for a genetic approach to mitigation in the form of a diagnostic DNA test for susceptibility to the disease. Recently, we have used the Illumina OvineSNP50 BeadChip to develop a genome-enabled prediction approach to screen for FE-tolerant sheep. Our current best genomic prediction for FE is for the Romney breed and has an accuracy of 0.38. This prediction accuracy is not as high as the individual accuracy gained by an artificial challenge test (0.64). However, it has the advantage of being a non-invasive test and can be provided as part of genomic testing for other traits at minimal cost.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença , Eczema/veterinária , Hepatopatias/veterinária , Micotoxicose/veterinária , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Doenças dos Ovinos/genética , Animais , Hepatopatias/genética , Hepatopatias/microbiologia , Micotoxicose/genética , Micotoxicose/microbiologia , Nova Zelândia , Seleção Genética , Ovinos , Doenças dos Ovinos/microbiologia , Especificidade da Espécie
4.
Front Plant Sci ; 13: 876095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837453

RESUMO

Drought seriously threats the growth and development of Gossypium hirsutum L. To dissect the genetic basis for drought tolerance in the G. hirsutum L. germplasm, a population, consisting of 188 accessions of G. hirsutum races and a cultivar (TM-1), was genotyped using the Cotton80KSNP biochip, and 51,268 high-quality single-nucleotide polymorphisms (SNPs) were obtained. Based on the phenotypic data of eight drought relative traits from four environments, we carried out association mapping with five models using GAPIT software. In total, thirty-six SNPs were detected significantly associated at least in two environments or two models. Among these SNPs, 8 and 28 (including 24 SNPs in 5 peak regions) were distributed in the A and D subgenome, respectively; eight SNPs were found to be distributed within separate genes. An SNP, TM73079, located on chromosome D10, was simultaneously associated with leaf fresh weight, leaf wilted weight, and leaf dry weight. Another nine SNPs, TM47696, TM33865, TM40383, TM10267, TM59672, TM59675, TM59677, TM72359, and TM72361, on chromosomes A13, A10, A12, A5, D6, and D9, were localized within or near previously reported quantitative trait loci for drought tolerance. Moreover, 520 genes located 200 kb up- and down-stream of 36 SNPs were obtained and analyzed based on gene annotation and transcriptome sequencing. The results showed that three candidate genes, Gh_D08G2462, Gh_A03G0043, and Gh_A12G0369, may play important roles in drought tolerance. The current GWAS represents the first investigation into mapping QTL for drought tolerance in G. hirsutum races and provides important information for improving cotton cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA