Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36911907

RESUMO

Carotenoid pigments underlie most of the red, orange, and yellow visual signals used in mate choice in vertebrates. However, many of the underlying processes surrounding the production of carotenoid-based traits remain unclear due to the complex nature of carotenoid uptake, metabolism, and deposition across tissues. Here, we leverage the ability to experimentally induce the production of a carotenoid-based red plumage patch in the red-backed fairywren (Malurus melanocephalus), a songbird in which red plumage is an important male sexual signal. We experimentally elevated testosterone in unornamented males lacking red plumage to induce the production of ornamentation and compared gene expression in both the liver and feather follicles between unornamented control males, testosterone-implanted males, and naturally ornamented males. We show that testosterone upregulates the expression of CYP2J19, a gene known to be involved in ketocarotenoid metabolism, and a putative carotenoid processing gene (ELOVL6) in the liver, and also regulates the expression of putative carotenoid transporter genes in red feather follicles on the back, including ABCG1. In black feathers, carotenoid-related genes are downregulated and melanin genes upregulated, but we find that carotenoids are still present in the feathers. This may be due to the activity of the carotenoid-cleaving enzyme BCO2 in black feathers. Our study provides a first working model of a pathway for carotenoid-based trait production in free-living birds, implicates testosterone as a key regulator of carotenoid-associated gene expression, and suggests hormones may coordinate the many processes that underlie the production of these traits across multiple tissues.


Assuntos
Passeriformes , Aves Canoras , Animais , Masculino , Testosterona/metabolismo , Pigmentação/genética , Carotenoides/metabolismo , Aves Canoras/genética , Plumas , Expressão Gênica
2.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38634224

RESUMO

In many species of animals, red carotenoid-based coloration is produced by metabolizing yellow dietary pigments, and this red ornamentation can be an honest signal of individual quality. However, the physiological basis for associations between organism function and the metabolism of red ornamental carotenoids from yellow dietary carotenoids remains uncertain. A recent hypothesis posits that carotenoid metabolism depends on mitochondrial performance, with diminished red coloration resulting from altered mitochondrial aerobic respiration. To test for an association between mitochondrial respiration and red carotenoids, we held wild-caught, molting male house finches in either small bird cages or large flight cages to create environmental challenges during the period when red ornamental coloration is produced. We predicted that small cages would present a less favorable environment than large flight cages and that captivity itself would decrease both mitochondrial performance and the abundance of red carotenoids compared with free-living birds. We found that captive-held birds circulated fewer red carotenoids, showed increased mitochondrial respiratory rates, and had lower complex II respiratory control ratios - a metric associated with mitochondrial efficiency - compared with free-living birds, though we did not detect a difference in the effects of small cages versus large cages. Among captive individuals, the birds that circulated the highest concentrations of red carotenoids had the highest mitochondrial respiratory control ratio for complex II substrate. These data support the hypothesis that the metabolism of red carotenoid pigments is linked to mitochondrial aerobic respiration in the house finch, but the mechanisms for this association remain to be established.


Assuntos
Carotenoides , Tentilhões , Mitocôndrias , Animais , Carotenoides/metabolismo , Masculino , Tentilhões/fisiologia , Tentilhões/metabolismo , Mitocôndrias/metabolismo , Respiração Celular , Consumo de Oxigênio
3.
Proc Biol Sci ; 286(1907): 20191039, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31311468

RESUMO

Keto-carotenoids contribute to many important traits in animals, including vision and coloration. In a great number of animal species, keto-carotenoids are endogenously produced from carotenoids by carotenoid ketolases. Despite the ubiquity and functional importance of keto-carotenoids in animals, the underlying genetic architectures of their production have remained enigmatic. The body and eye colorations of spider mites (Arthropoda: Chelicerata) are determined by ß-carotene and keto-carotenoid derivatives. Here, we focus on a carotenoid pigment mutant of the spider mite Tetranychus kanzawai that, as shown by chromatography, lost the ability to produce keto-carotenoids. We employed bulked segregant analysis and linked the causal locus to a single narrow genomic interval. The causal mutation was fine-mapped to a minimal candidate region that held only one complete gene, the cytochrome P450 monooxygenase CYP384A1, of the CYP3 clan. Using a number of genomic approaches, we revealed that an inactivating deletion in the fourth exon of CYP384A1 caused the aberrant pigmentation. Phylogenetic analysis indicated that CYP384A1 is orthologous across mite species of the ancient Trombidiformes order where carotenoids typify eye and body coloration, suggesting a deeply conserved function of CYP384A1 as a carotenoid ketolase. Previously, CYP2J19, a cytochrome P450 of the CYP2 clan, has been identified as a carotenoid ketolase in birds and turtles. Our study shows that selection for endogenous production of keto-carotenoids led to convergent evolution, whereby cytochrome P450s were independently co-opted in vertebrate and invertebrate animal lineages.


Assuntos
Proteínas de Artrópodes/genética , Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Pigmentação/genética , Tetranychidae/fisiologia , Animais , Proteínas de Artrópodes/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Tetranychidae/genética
4.
Metab Eng ; 52: 243-252, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578862

RESUMO

The high-value ketocarotenoid astaxanthin, a natural red colorant with powerful antioxidant activity, is synthesised from ß-carotene by a hydroxylase and an oxygenase enzyme, which perform the addition of two hydroxyl and keto moieties, respectively. Several routes of intermediates, depending on the sequence of action of these enzymes, lead to the formation of astaxanthin. In the present study, the enzyme activities of 3, 3' ß-carotene hydroxylase (CRTZ) and 4, 4' ß-carotene oxygenase (CRTW) have been combined through the creation of "new to nature" enzyme fusions in order to overcome leakage of non-endogenous intermediates and pleotropic effects associated with their high levels in plants. The utility of flexible linker sequences of varying size has been assessed in the construction of pZ-W enzyme fusions. Frist, in vivo color complementation assays in Escherichia coli have been used to evaluate the potential of the fusion enzymes. Analysis of the carotenoid pigments present in strains generated indicated that the enzyme fusions only possess both catalytic activities when CRTZ is attached as the N-terminal module. Astaxanthin levels in E. coli cells were increased by 1.4-fold when the CRTZ and CRTW enzymes were fused compared to the individual enzymes. Transient expression in Nicotiana benthamiana was then performed in order to assess the potential of the fusions in a plant system. The production of valuable ketocarotenoids was achieved using this plant-based transient expression system. This revealed that CRTZ and CRTW, transiently expressed as a fusion, accumulated similar levels of astaxanthin compared to the expression of the individual enzymes whilst being associated with reduced ketocarotenoid intermediate levels (e.g. phoenicoxanthin, canthaxanthin and 3-OH-echinenone) and a reduced rate of leaf senescence after transformation. Therefore, the quality of the plant material producing the ketocarotenoids was enhanced due to a reduction in the stress induced by the accumulation of high levels of heterologous ketocarotenoid intermediates. The size of the linkers appeared to have no effect upon activity. The potential of the approach to production of valuable plant derived products is discussed.


Assuntos
Carotenoides/biossíntese , Cetoses/biossíntese , Plantas/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fusão Gênica , Engenharia Metabólica/métodos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Folhas de Planta/metabolismo , Plantas/genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , Nicotiana/genética , Nicotiana/metabolismo , Xantofilas/biossíntese
5.
Transgenic Res ; 26(1): 13-23, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27567632

RESUMO

Astaxanthin is a high-value ketocarotenoid rarely found in plants. It is derived from ß-carotene by the 3-hydroxylation and 4-ketolation of both ionone end groups, in reactions catalyzed by ß-carotene hydroxylase and ß-carotene ketolase, respectively. We investigated the feasibility of introducing an extended carotenoid biosynthesis pathway into rice endosperm to achieve the production of astaxanthin. This allowed us to identify potential metabolic bottlenecks that have thus far prevented the accumulation of this valuable compound in storage tissues such as cereal grains. Rice endosperm does not usually accumulate carotenoids because phytoene synthase, the enzyme responsible for the first committed step in the pathway, is not present in this tissue. We therefore expressed maize phytoene synthase 1 (ZmPSY1), Pantoea ananatis phytoene desaturase (PaCRTI) and a synthetic Chlamydomonas reinhardtii ß-carotene ketolase (sCrBKT) in transgenic rice plants under the control of endosperm-specific promoters. The resulting grains predominantly accumulated the diketocarotenoids canthaxanthin, adonirubin and astaxanthin as well as low levels of monoketocarotenoids. The predominance of canthaxanthin and adonirubin indicated the presence of a hydroxylation bottleneck in the ketocarotenoid pathway. This final rate-limiting step must therefore be overcome to maximize the accumulation of astaxanthin, the end product of the pathway.


Assuntos
Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Oxirredutases/genética , Oxigenases/genética , Chlamydomonas reinhardtii/enzimologia , Endosperma/genética , Endosperma/metabolismo , Engenharia Genética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Oxigenases de Função Mista/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Oxigenases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Xantofilas/biossíntese , Xantofilas/genética , Zea mays/enzimologia , beta Caroteno/biossíntese , beta Caroteno/genética
6.
Plant J ; 75(3): 441-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23607313

RESUMO

Carotenoids are a diverse group of tetraterpenoid pigments found in plants, fungi, bacteria and some animals. They play vital roles in plants and provide important health benefits to mammals, including humans. We previously reported the creation of a diverse population of transgenic maize plants expressing various carotenogenic gene combinations and exhibiting distinct metabolic phenotypes. Here we performed an in-depth targeted mRNA and metabolomic analysis of the pathway to characterize the specific impact of five carotenogenic transgenes and their interactions with 12 endogenous genes in four transgenic lines representing distinct genotypes and phenotypes. We reconstructed the temporal profile of the carotenoid pathway during endosperm development at the mRNA and metabolic levels (for total and individual carotenoids), and investigated the impact of transgene expression on the endogenous pathway. These studies enabled us to investigate the extent of any interactions between the introduced transgenic and native partial carotenoid pathways during maize endosperm development. Importantly, we developed a theoretical model that explains these interactions, and our results suggest genetic intervention points that may allow the maize endosperm carotenoid pathway to be engineered in a more effective and predictable manner.


Assuntos
Carotenoides/genética , Carotenoides/metabolismo , Plantas Geneticamente Modificadas , Zea mays/genética , Zea mays/metabolismo , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Metaboloma , Reação em Cadeia da Polimerase em Tempo Real/métodos , Xantofilas/metabolismo
7.
Arch Biochem Biophys ; 545: 141-7, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24486200

RESUMO

Xanthophyllomces dendrorhous (in asexual state named as Phaffia rhodozyma) is a fungus which produces astaxanthin, a high value carotenoid used in aquafarming. Genetic pathway engineering is one of several steps to increase the astaxanthin yield. The limiting enzyme of the carotenoid pathway is phytoene synthase. Integration plasmids were constructed for transformation with up to three copies of the crtYB gene. Upon stepwise transformation, the copy numbers of crtYB was continuously increased leading to an almost saturated level of phytoene synthase as indicated by total carotenoid content. Several carotenoid intermediates accumulated which were absent in the wild type. Some of them are substrates and intermediates of astaxanthin synthase. They could be further converted into astaxanthin by additional transformation with the astaxanthin synthase gene. However, three intermediates exhibited an unusual optical absorbance spectrum not found before. These novel keto carotenoid were identified by HPLC co-chromatography with reference compounds generated in Escherichia coli and one of them 3-HO-4-keto-7',8'-dihydro-ß-carotene additionally by NMR spectroscopy. The others were 4-keto-ß-zeacarotene and 4-keto-7',8'-dihydro-ß-carotene. A biosynthesis pathway with their origin from neurosporene and the reason for their synthesis especially in our transformants has been discussed.


Assuntos
Proteínas Fúngicas/genética , Leveduras/genética , Leveduras/metabolismo , beta Caroteno/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Engenharia Genética , Leveduras/enzimologia , beta Caroteno/análogos & derivados , beta Caroteno/genética
8.
Comp Biochem Physiol B Biochem Mol Biol ; 275: 111027, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216512

RESUMO

Plumage ornaments act as important sexual signals, though the extent to which these ornaments act as honest signals-and the physiological mechanisms that maintain honesty-remain poorly understood. We studied the pigmentary basis of tail color in the American Redstart (Setophaga ruticilla), a species of songbird with sexual dichromatism and delayed plumage maturation; younger males resemble females, only replacing their yellow feathers for bright orange ones after the first breeding season. The yellow rectrices of females and young males and the orange feathers of older males largely contain the same pigments, but in vastly different proportions. Whereas the feathers of females and young males contain primarily lutein, 3'-dehydro-lutein and canary-xanthophylls, those of older males contain primarily 4-keto-carotenoids. The presence of lutein and the predominance of α-doradexanthin as 4-keto-carotenoid, a pigment with a shortened chain of conjugated double bonds compared to keto-carotenoids commonly found in red feathers, in the feathers of older males contribute to their uncommon orange hue. Since the orange coloration of the tail in the American redstart results from the combination of yellow, orange, and red pigments, this is a system where slight adjustments in the types of carotenoids deposited could significantly alter hue. Factors either work against achieving the most oxidized state in this species or the hue is maintained through stabilizing selection for a favored color. The color metrics of Carotenoid Chroma, Visible Hue, λR50 and tetrahedral θ best captured differences in pigment concentration and make-up, and are recommended in future spectrophotometric studies of carotenoid-based traits.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39318264

RESUMO

Harsh early environmental conditions can exert delayed, long-lasting effects on phenotypes, including reproductive traits such as sexual signals. Indeed, adverse early conditions can accelerate development, increasing oxidative stress that may, in turn, impact adult sexual signals. Among signals, colorations produced by red ketocarotenoids seem to depend on mitochondrial functioning. Hence, they could reveal individual cell respiration efficiency. It has been hypothesized that these traits are unfalsifiable "index" signals of condition due to their deep connection to individual metabolism. Since mitochondrial dysfunction is frequently linked to aging, red ketocarotenoid-based ornaments could also be good signals of a critical fitness component: longevity. We tested this red color per longevity correlation in captive zebra finches. In addition, we experimentally decreased the synthesis of glutathione (a critical intracellular antioxidant) during the first days of the birds' life to resemble harsh early environmental conditions (e.g., undernutrition). Longevity was recorded until the death of the last bird (almost 9 years). Males, but not females, exhibiting a redder bill in early adulthood lived longer than males with paler bills, which agrees with some precedent studies. However, such bill redness-longevity connection was absent among males with inhibited glutathione synthesis. These findings may suggest that environmental factors can alter the reliability of red ketocarotenoid-based sexual signals, making them less unfalsifiable than believed.

10.
Metab Eng Commun ; 17: e00226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449053

RESUMO

The polyextremophilic Cyanidiophyceae are eukaryotic red microalgae with promising biotechnological properties arising from their low pH and elevated temperature requirements which can minimize culture contamination at scale. Cyanidioschyzon merolae 10D is a cell wall deficient species with a fully sequenced genome that is amenable to nuclear transgene integration by targeted homologous recombination. C. merolae maintains a minimal carotenoid profile and here, we sought to determine its capacity for ketocarotenoid accumulation mediated by heterologous expression of a green algal ß-carotene ketolase (BKT) and hydroxylase (CHYB). To achieve this, a synthetic transgene expression cassette system was built to integrate and express Chlamydomonas reinhardtii (Cr) sourced enzymes by fusing native C. merolae transcription, translation and chloroplast targeting signals to codon-optimized coding sequences. Chloramphenicol resistance was used to select for the integration of synthetic linear DNAs into a neutral site within the host genome. CrBKT expression caused accumulation of canthaxanthin and adonirubin as major carotenoids while co-expression of CrBKT with CrCHYB generated astaxanthin as the major carotenoid in C. merolae. Unlike green algae and plants, ketocarotenoid accumulation in C. merolae did not reduce total carotenoid contents, but chlorophyll a reduction was observed. Light intensity affected global ratios of all pigments but not individual pigment compositions and phycocyanin contents were not markedly different between parental strain and transformants. Continuous illumination was found to encourage biomass accumulation and all strains could be cultivated in simulated summer conditions from two different extreme desert environments. Our findings present the first example of carotenoid metabolic engineering in a red eukaryotic microalga and open the possibility for use of C. merolae 10D for simultaneous production of phycocyanin and ketocarotenoid pigments.

11.
Biol Rev Camb Philos Soc ; 98(6): 2320-2332, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37563787

RESUMO

Even as numerous studies have documented that the red and yellow coloration resulting from the deposition of carotenoids serves as an honest signal of condition, the evolution of condition dependency is contentious. The resource trade-off hypothesis proposes that condition-dependent honest signalling relies on a trade-off of resources between ornamental display and body maintenance. By this model, condition dependency can evolve through selection for a re-allocation of resources to promote ornament expression. By contrast, the index hypothesis proposes that selection focuses mate choice on carotenoid coloration that is inherently condition dependent because production of such coloration is inexorably tied to vital cellular processes. These hypotheses for the origins of condition dependency make strongly contrasting and testable predictions about ornamental traits. To assess these two models, we review the mechanisms of production of carotenoids, patterns of condition dependency involving different classes of carotenoids, and patterns of behavioural responses to carotenoid coloration. We review evidence that traits can be condition dependent without the influence of sexual selection and that novel traits can show condition-dependent expression as soon as they appear in a population, without the possibility of sexual selection. We conclude by highlighting new opportunities for studying condition-dependent signalling made possible by genetic manipulation and expression of ornamental traits in synthetic biological systems.


Assuntos
Carotenoides , Pigmentação , Carotenoides/metabolismo , Pigmentação/fisiologia
12.
Bioengineering (Basel) ; 10(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37760175

RESUMO

Astaxanthin is a fascinating molecule with powerful antioxidant activity, synthesized exclusively by specific microorganisms and higher plants. To expand astaxanthin production, numerous studies have employed metabolic engineering to introduce and optimize astaxanthin biosynthetic pathways in microorganisms and plant hosts. Here, we report the metabolic engineering of animal cells in vitro to biosynthesize astaxanthin. This was accomplished through a two-step study to introduce the entire astaxanthin pathway into human embryonic kidney cells (HEK293T). First, we introduced the astaxanthin biosynthesis sub-pathway (Ast subp) using several genes encoding ß-carotene ketolase and ß-carotene hydroxylase enzymes to synthesize astaxanthin directly from ß-carotene. Next, we introduced a ß-carotene biosynthesis sub-pathway (ß-Car subp) with selected genes involved in Ast subp to synthesize astaxanthin from geranylgeranyl diphosphate (GGPP). As a result, we unprecedentedly enabled HEK293T cells to biosynthesize free astaxanthin from GGPP with a concentration of 41.86 µg/g dry weight (DW), which represented 66.19% of the total ketocarotenoids (63.24 µg/g DW). Through optimization steps using critical factors in the astaxanthin biosynthetic process, a remarkable 4.14-fold increase in total ketocarotenoids (262.10 µg/g DW) was achieved, with astaxanthin constituting over 88.82%. This pioneering study holds significant implications for transgenic animals, potentially revolutionizing the global demand for astaxanthin, particularly within the aquaculture sector.

13.
R Soc Open Sci ; 9(8): 220434, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35937912

RESUMO

Intense red colours in birds are often owing to ketocarotenoids (KCs). In many land birds, KCs are oxidized from dietary yellow precursors, presumably by the avian carotenoid ketolase CYP2J19, the regulation and constraints of which have important implications for condition-dependence and honest signalling of carotenoid colour displays. We investigated hepatic CYP2J19 gene expression in the seasonally and sexually dichromatic southern red bishop (Euplectes orix) in relation to season, sex, progression of the prenuptial moult, testis size, body condition, redness and circulating sex steroids. A coloration function of CYP2J19 is supported by a seasonal upregulation prior to and during the carotenoid-depositing stage of the male prenuptial moult. However, CYP2J19 expression was similarly high in females (which do not moult prenuptially), and remained high in males after moult, suggesting additional or alternative roles of hepatic CYP2J19 or its products, such as detoxification or antioxidant functions. In males, the CYP2J19 upregulation preceded and was unrelated to the rise in plasma testosterone, but was correlated with androstenedione, probably of adrenal origin and compatible with luteinizing hormone-induced and (in females) oestrogen-suppressed moult. Finally, contrary to ideas that carotenoid ketolation rate mediates honest signalling of male quality, CYP2J19 expression was not related to plumage redness or male body condition.

14.
Methods Enzymol ; 670: 459-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871844

RESUMO

Carotenoid pigments serve many endogenous functions in organisms, but some of the more fascinating are the external displays of carotenoids in the colorful red, orange and yellow plumages of birds. Since Darwin, biologists have been curious about the selective advantages (e.g., mate attraction) of having such ornate features, and, more recently, advances in biochemical methods have permitted researchers to explore the composition and characteristics of carotenoid pigments in feathers. Here we review contemporary methods for extracting and analyzing carotenoids in bird feathers, with special attention to the difficulties of removal from the feather keratin matrix, the possibility of feather carotenoid esterification and the strengths and challenges of different analytical methods like high-performance liquid chromatography and Raman spectroscopy. We also add an experimental test of current common extraction methods (e.g., mechanical, thermochemical) and find significant differences in the recovery of specific classes of carotenoids, suggesting that no single approach is best for all pigment or feather types.


Assuntos
Carotenoides , Plumas , Animais , Aves , Cromatografia Líquida de Alta Pressão , Plumas/química , Pigmentação
15.
Algal Res ; 55: 102255, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33777686

RESUMO

Photosynthetic organisms evolved different mechanisms to protect themselves from high irradiances and photodamage. In cyanobacteria, the photoactive Orange Carotenoid-binding Protein (OCP) acts both as a light sensor and quencher of excitation energy. It binds keto-carotenoids and, when photoactivated, interacts with phyco-bilisomes, thermally dissipating the excitation energy absorbed by the latter, and acting as efficient singlet oxygen quencher. Here, we report the heterologous expression of an OCP2 protein from the thermophilic cyanobacterium Fischerella thermalis (FtOCP2) in the model organism for green algae, Chlamydomonas reinhardtii. Robust expression of FtOCP2 was obtained through a synthetic redesigning strategy for optimized expression of the transgene. FtOCP2 expression was achieved both in UV-mediated mutant 4 strain, previously selected for efficient transgene expression, and in a background strain previously engineered for constitutive expression of an endogenous ß-carotene ketolase, normally poorly expressed in this species, resulting into astaxanthin and other ketocarotenoids accumulation. Recombinant FtOCP2 was successfully localized into the chloroplast. Upon purification it was possible to demonstrate the formation of holoproteins with different xanthophylls and keto-carotenoids bound, including astaxanthin. Moreover, isolated ketocarotenoid-binding FtOCP2 holoproteins conserved their photoconversion properties. Carotenoids bound to FtOCP2 were thus maintained in solution even in absence of organic solvent. The synthetic biology approach herein reported could thus be considered as a novel tool for improving the solubility of ketocarotenoids produced in green algae, by binding to water-soluble carotenoids binding proteins.

16.
Phytochemistry ; 191: 112912, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34450419

RESUMO

The esterification of carotenoids has been associated with high-level accumulation, greater stability and potentially improved dietary bioavailability. Engineering the formation of ketocarotenoids into tomato fruit has resulted in the esterification of these non-endogenous metabolites. A genotype of tomato was created that contains; (i) the mutant pale yellow petal (pyp)1-1 allele, which is responsible for the absence of carotenoid esters in tomato flowers and (ii) the heterologous enzymes for ketocarotenoid formation. Analysis of the resulting progeny showed altered quantitative and qualitative differences in esterified carotenoids. For example, in ripe fruit tissues, in the presence of the pyp mutant allele, non-endogenous ketocarotenoid esters were absent while their free forms accumulated. These data demonstrate the involvement of the PYP gene product in the esterification of diverse xanthophylls.


Assuntos
Solanum lycopersicum , Aciltransferases/metabolismo , Esterificação , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Xantofilas/metabolismo
17.
Food Res Int ; 122: 340-347, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229087

RESUMO

Mamey sapote is a fruit rich in specific keto-carotenoids, namely sapotexanthin and cryptocapsin. Their chemical structure suggests their provitamin A activity, although their absorption and conversion to vitamin A remained to be demonstrated in humans. Besides structure-related factors, the fruit matrix might also hamper absorption and conversion efficiency. Therefore, we monitored carotenoid and vitamin A levels in triacylglycerol-rich lipoprotein (TRL) fractions in plasma of human participants after consumption of fresh sapote and a carotenoid-rich "matrix-free" formulation derived thereof. A randomized 2-way cross-over study was conducted to compare the post-prandial bioavailability of 0.8 mg sapotexanthin and 1.2-1.5 mg cryptocapsin from the above-mentioned test meals. Seven blood samples were drawn over 9.5 h after test meal consumption. Carotenoids and retinoids were quantitated in TRL fractions using HPLC-DAD. Sapotexanthin was absorbed by all participants from all meals, being ca. 36% more bioavailable from the "matrix-free" formulation (AUCmedian = 73.4 nmol∙h/L) than from the fresh fruit (AUCmedian = 54.0 nmol∙h/L; p ≤ 0.001). Cryptocapsin was only absorbed by 4 of 13 participants. The appearance of retinyl esters was observed in all participants independent of the test meal. Although the fruit matrix hampered carotenoid in vivo-bioavailability from sapote, the fruit clearly represents a valuable source of vitamin A for humans.


Assuntos
Carotenoides/sangue , Carotenoides/farmacocinética , Manilkara/química , Vitamina A/metabolismo , Adulto , Disponibilidade Biológica , Estudos Cross-Over , Dieta , Feminino , Frutas/química , Humanos , Masculino , Período Pós-Prandial/fisiologia , Adulto Jovem
18.
Microorganisms ; 7(11)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661899

RESUMO

The model cyanobacterium Synechocystis sp. PCC 6803 has gained significant attention as an alternative and sustainable source for biomass, biofuels and added-value compounds. The latter category includes keto-carotenoids, which are molecules largely employed in a wide spectrum of industrial applications in the food, feed, nutraceutical, cosmetic and pharmaceutical sectors. Keto-carotenoids are not naturally synthesized by Synechocystis, at least in any significant amounts, but their accumulation can be induced by metabolic engineering of the endogenous carotenoid biosynthetic pathway. In this study, the accumulation of the keto-carotenoids astaxanthin and canthaxanthin, resulting from the constitutive or temperature-inducible expression of the CrtW and CrtZ genes from Brevundimonas, is compared. The benefits and drawbacks of the two engineering approaches are discussed.

19.
Methods Mol Biol ; 1852: 73-95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109625

RESUMO

We elucidate the peculiarities of express analysis of secondary carotenoids from microalgae and their preliminary identification using TLC and UV-Vis spectroscopy with emphasis on biotechnologically significant producers of the value-added pigment astaxanthin. Advantages and limitations of the method are described to underline the value of TLC as a potential companion method to mainstream separation techniques such as HPLC. Special attention is paid to common errors and pitfalls of the method and possible work-arounds, as well as to overall strategy of the analysis, sample preparation, and material selection.


Assuntos
Carotenoides/análise , Carotenoides/metabolismo , Microalgas/genética , Microalgas/metabolismo , Metabolismo Secundário , Biomassa , Carotenoides/química , Solventes , Análise Espectral
20.
Methods Mol Biol ; 1852: 193-209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109632

RESUMO

Zeaxanthin is a yellow xanthophyll, dihydroxy-carotenoid, that is naturally found in some of the green, orange, and yellow vegetables and fruits and has a powerful antioxidant activity. Epidemiological evidences suggest that increasing the consumption of zeaxanthin in the diet is associated with a lower risk of age-related macular degeneration (ARMD) and cataracts, two of the leading causes of blindness in the world. Zeaxanthin is a promising nutraceutical/colorant with many applications in feed, food, and pharmaceutical industries. Currently, the commercial production of zeaxanthin is dependent on synthetic routes with limitation in production from biological sources. However, the biotechnological production of natural zeaxanthin is favored due to its safety, potential large-scale production and consumers' preference for natural additives. In this chapter, we describe a rapid screening method based on 16S rRNA gene sequencing and effective HPLC with diode array detector/MS methods for the isolation and identification of zeaxanthin-producing bacteria and their carotenoid analysis.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Zeaxantinas/biossíntese , Bactérias/classificação , Bactérias/genética , Técnicas de Tipagem Bacteriana , Carotenoides/análise , Carotenoides/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Estrutura Molecular , Filogenia , RNA Ribossômico 16S/genética , Zeaxantinas/química , Zeaxantinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA