Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
World J Urol ; 42(1): 25, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206410

RESUMO

PURPOSE: On the new era of stem cell therapy, the present experimental study was conducted to investigate renal regenerative capacity related to kidney stem cell reserve in different nephrectomy (Nx) models. METHODS: Three- and eight-week-old rats (n = 168) were randomly divided into four groups to include control and three Nx subgroups (1/6 Nx, 1/2 Nx, and 5/6 Nx) (Fig. 1). On post-Nx days 15, 30 and 60, kidney specimens were obtained to determine renal regenerative capacity. The specimens were examined with immunofluorescence. CD90/CD105 and Ki-67 expressions were determined as stem cell and cellular proliferation markers, respectively. Fig. 1 Intraoperative photographs showing three different types of nephrectomies (unilateral total Nx has not been shown in 5/6 Nx group) RESULTS: CD90 and CD105 expressions were stronger in glomeruli, but Ki-67 expressions were present only in tubuli. When all Nx types and post-Nx days were considered, both 3- and 8-week-old rats undergone 5/6 Nx had the highest glomerular CD90 and CD105 double expressions. While the expressions gradually increased toward the day 60 in 3-weeks old rats, 8-week-old rats had almost stable double expressions. The strongest tubular Ki-67 expressions were seen in 5/6 Nx groups of both in 3- and 8-week-old rats. The expressions were strongest on day 15 and then gradually decreased. Ipsilateral 1/6 Nx groups had stronger Ki-67 expression than contralateral ones in both age groups. CONCLUSIONS: Kidneys may pose a regenerative response to tissue/volume loss through its own CD90- and CD105-related stem cell reserve which mainly takes place in glomeruli and seems to have some interactions with Ki-67-related tubular proliferative process. This response supports that kidney stem cells may have a potential to overcome tissue/volume loss-related damage.


Assuntos
Rim , Células-Tronco , Animais , Ratos , Antígeno Ki-67 , Nefrectomia , Proliferação de Células
2.
J Pathol ; 259(2): 149-162, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373978

RESUMO

Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/patologia , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Células Epiteliais , Glicólise
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731829

RESUMO

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Assuntos
Injúria Renal Aguda , Proteínas de Ciclo Celular , Túbulos Renais Proximais , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Via de Sinalização Hippo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Transdução de Sinais
4.
Medicina (Kaunas) ; 60(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38256324

RESUMO

Background and Objectives: To date, the therapeutic potential of skeletal muscle-derived stem/progenitor cells (MDSPCs) for acute kidney injury (AKI) has only been evaluated by our research group. We aimed to compare MDSPCs with bone marrow mesenchymal stem cells (BM-MSCs) and evaluate their feasibility for the treatment of AKI. Materials and Methods: Rats were randomly assigned to four study groups: control, GM (gentamicin) group, GM+MDSPCs, and GM+BM-MSCs. AKI was induced by gentamicin (80 mg/kg/day; i.p.) for 7 consecutive days. MDSPCs and BM-MSCs were injected 24 h after the last gentamicin injection. Kidney parameters were determined on days 0, 8, 14, 21, and 35. Results: MDSPCs and BM-MSCs accelerated functional kidney recovery, as reflected by significantly lower serum creatinine levels and renal injury score, higher urinary creatinine and creatinine clearance levels (p < 0.05), lower TUNEL-positive cell number, and decreased KIM-1 and NGAL secretion in comparison to the non-treated AKI group. There was no significant difference in any parameters between the MDSPCs and BM-MSCs groups (p > 0.05). Conclusions: MDSPCs and BM-MSCs can migrate and incorporate into injured renal tissue, resulting in a beneficial impact on functional and morphological kidney recovery, which is likely mediated by the secretion of paracrine factors and an anti-apoptotic effect. MDSPCs were found to be non-inferior to BM-MSCs and therefore can be considered as a potential candidate strategy for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Animais , Ratos , Creatinina , Injúria Renal Aguda/terapia , Gentamicinas , Músculos
5.
J Artif Organs ; 25(3): 191-194, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35102521

RESUMO

Tissue engineering is a highly interdisciplinary research field aiming at repairing, replacing, and regenerating the defective tissues. Over several decades of research, a variety of methods have been developed. The technical methods can be categorized into scaffold-based and scaffold-free strategies. In this mini review, the discussion will be focused on the technical methods of tissue engineering for kidney regeneration and construction.


Assuntos
Regeneração , Engenharia Tecidual , Rim , Tecnologia , Alicerces Teciduais
6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232326

RESUMO

The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.


Assuntos
Rim , Células-Tronco , Animais , Proteínas de Fluorescência Verde/metabolismo , Rim/metabolismo , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Células-Tronco/metabolismo
7.
Clin Exp Nephrol ; 25(6): 574-584, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33656639

RESUMO

With few curative treatments for kidney diseases, increasing attention has been paid to regenerative medicine as a new therapeutic option. Recent progress in kidney regeneration using human-induced pluripotent stem cells (hiPSCs) is noteworthy. Based on the knowledge of kidney development, the directed differentiation of hiPSCs into two embryonic kidney progenitors, nephron progenitor cells (NPCs) and ureteric bud (UB), has been established, enabling the generation of nephron and collecting duct organoids. Furthermore, human kidney tissues can be generated from these hiPSC-derived progenitors, in which NPC-derived glomeruli and renal tubules and UB-derived collecting ducts are interconnected. The induced kidney tissues are further vascularized when transplanted into immunodeficient mice. In addition to the kidney reconstruction for use in transplantation, it has been demonstrated that cell therapy using hiPSC-derived NPCs ameliorates acute kidney injury (AKI) in mice. Disease modeling and drug discovery research using disease-specific hiPSCs has also been vigorously conducted for intractable kidney disorders, such as autosomal dominant polycystic kidney disease (ADPKD). In an attempt to address the complications associated with kidney diseases, hiPSC-derived erythropoietin (EPO)-producing cells were successfully generated to discover drugs and develop cell therapy for renal anemia. This review summarizes the current status and future perspectives of developmental biology of kidney and iPSC technology-based regenerative medicine for kidney diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Nefropatias/cirurgia , Rim/fisiopatologia , Regeneração , Medicina Regenerativa , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Fenótipo , Recuperação de Função Fisiológica , Resultado do Tratamento
8.
J Am Soc Nephrol ; 30(12): 2293-2305, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548350

RESUMO

BACKGROUND: The limited availability of donor kidneys for transplantation has spurred interest in investigating alternative strategies, such as regenerating organs from stem cells transplanted into animal embryos. However, there is no known method for transplanting cells into later-stage embryos, which may be the most suitable host stages for organogenesis, particularly into regions useful for kidney regeneration. METHODS: We demonstrated accurate transplantation of renal progenitor cells expressing green fluorescent protein to the fetal kidney development area by incising the opaque uterine muscle layer but not the transparent amniotic membrane. We allowed renal progenitor cell-transplanted fetuses to develop for 6 days postoperatively before removal for analysis. We also transplanted renal progenitor cells into conditional kidney-deficient mouse embryos. We determined growth and differentiation of transplanted cells in all cases. RESULTS: Renal progenitor cell transplantation into the retroperitoneal cavity of fetuses at E13-E14 produced transplant-derived, vascularized glomeruli with filtration function and did not affect fetal growth or survival. Cells transplanted to the nephrogenic zone produced a chimera in the cap mesenchyme of donor and host nephron progenitor cells. Renal progenitor cells transplanted to conditional kidney-deficient fetuses induced the formation of a new nephron in the fetus that is connected to the host ureteric bud. CONCLUSIONS: We developed a cell transplantation method for midstage to late-stage fetuses. In vivo kidney regeneration from renal progenitor cells using the renal developmental environment of the fetus shows promise. Our findings suggest that fetal transplantation methods may contribute to organ regeneration and developmental research.


Assuntos
Células-Tronco Embrionárias/transplante , Rim/fisiologia , Regeneração/fisiologia , Animais , Transferência Embrionária , Feminino , Genes Reporter , Idade Gestacional , Rim/citologia , Rim/embriologia , Masculino , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Néfrons/embriologia , Espaço Retroperitoneal , Quimeras de Transplante
9.
Biochem Biophys Res Commun ; 516(3): 680-685, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248596

RESUMO

Acute renal injury (AKI) is a serious disorder of renal failure or renal damage that occurs within hours or days. At present, there is no approved pharmaceutical treatment for AKI. Zebrafish is an excellent model for studying the repair of AKI because of its remarkable ability to repair kidney injury. Using zebrafish AKI model inducing by gentamicin, we found that hydrogen peroxide (H2O2) plays dual roles during the period of AKI recovery including renal repair and kidney regeneration. In the repair stage of AKI, H2O2 was produced in proximal and distal segments of renal tubules. By inhibiting H2O2 generation using Duox Vivo-Morpholino or chemical inhibitor, it was observed of severe damage of renal tubules, and extensive cell apoptosis. In the stage of regeneration, we found that H2O2 was highly generated in renal interstitium. Inhibiting production of H2O2 could significantly down-regulate the ability of kidney regeneration, which was associated with the failure of proliferation of renal progenitor cells. Therefore, H2O2 acts as a protective factor in renal repair and an initial signal of kidney regeneration, indicating the key roles of H2O2 in promoting recovery of AKI in zebrafish.


Assuntos
Injúria Renal Aguda/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Túbulos Renais Proximais/metabolismo , Transdução de Sinais/fisiologia , Injúria Renal Aguda/genética , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Túbulos Renais Proximais/patologia , Morfolinos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Regeneração/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Biochem Biophys Res Commun ; 520(3): 627-633, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31623827

RESUMO

Kidney regenerative medicine is expected to be the solution to the shortage of organs for transplantation. In a previous report, we transplanted exogenous renal progenitor cells (RPCs) including nephron progenitor cells (NPCs), stromal progenitor cells (SPCs), and the ureteric bud (UB) into the nephrogenic zone of animal embryos and succeeded in regenerating new nephrons from exogenous NPCs through a fetal developmental program. However, it was unknown whether the renal stromal lineage cells were regenerated from SPCs. The present study aimed to verify the differentiation of SPCs into mesangial cells and renal stromal lineage cells. Here, we found that simply transplanting RPCs, including SPCs, into the nephrogenic zone of wild-type fetal mice was insufficient for differentiation of SPCs. Therefore, to enrich the purity of SPCs, we sorted cells from RPCs by targeting platelet-derived growth factor receptor alpha (PDGFRa) which is a cell surface marker for immature stromal cells and transplanted the PDGFRa-positive sorted cells. As a result, we succeeded in regenerating a large number of mesangial cells and other renal stromal lineage cells including interstitial fibroblasts, vascular pericytes, and juxtaglomerular cells. We have established the method for regeneration of stromal cells from exogenous SPCs that may contribute to various fields, such as regenerative medicine and kidney embryology, and the creation of disease models for renal stromal disorders.


Assuntos
Rim/embriologia , Células Mesangiais/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Rim/citologia , Rim/fisiologia , Masculino , Células Mesangiais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Gravidez , Medicina Regenerativa , Transplante de Células-Tronco , Células Estromais/citologia , Células Estromais/fisiologia , Células Estromais/transplante
11.
Nephrol Dial Transplant ; 34(10): 1669-1680, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624740

RESUMO

BACKGROUND: Cisplatin is an effective chemotherapeutic agent. However, acute kidney injury (AKI) and subsequent kidney function decline limits its use. Dipeptidyl peptidase-4 (DPP-4) inhibitor has been reported to attenuate kidney injury in some in vivo models, but the mechanisms-of-action in tubule recovery upon AKI remain speculative. We hypothesized that DPP-4 inhibitor teneligliptin (TG) can facilitate kidney recovery after cisplatin-induced AKI. METHODS: In in vivo experiment, AKI was induced in rats by injecting 5 mg/kg of cisplatin intravenously. Oral administration of 10 mg/kg of TG, once a day, was started just before injecting cisplatin or from Day 5 after cisplatin injection. In an in vitro experiment, proliferation of isolated murine tubular cells was evaluated with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis and cell counting. Cell viability was analysed by MTT assay or lactate dehydrogenase (LDH) assay. RESULTS: In in vivo experiments, we found that TG attenuates cisplatin-induced AKI and accelerates kidney recovery after the injury by promoting the proliferation of surviving epithelial cells of the proximal tubule. TG also suppressed intrarenal tumour necrosis factor-α expression, and induced macrophage polarization towards the anti-inflammatory M2 phenotype, both indirectly endorsing tubule recovery upon cisplatin injury. In in vitro experiments, TG directly accelerated the proliferation of primary tubular epithelial cells. Systematic screening of the DPP-4 substrate chemokines in vitro identified CXC chemokine ligand (CXCL)-12 as a promoted mitogenic factor. CXCL12 not only accelerated proliferation but also inhibited cell death of primary tubular epithelial cells after cisplatin exposure. CXC chemokine receptor (CXCR)-4 antagonism abolished the proliferative effect of TG. CONCLUSIONS: The DPP-4 inhibitor TG can accelerate tubule regeneration and functional recovery from toxic AKI via an anti-inflammatory effect and probably via inhibition of CXCL12 breakdown. Hence, DPP-4 inhibitors may limit cisplatin-induced nephrotoxicity and improve kidney function in cancer patients.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cisplatino/toxicidade , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inflamação/prevenção & controle , Túbulos Renais Proximais/citologia , Pirazóis/farmacologia , Regeneração/efeitos dos fármacos , Tiazolidinas/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular , Inflamação/metabolismo , Inflamação/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos
12.
Adv Exp Med Biol ; 1123: 195-216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016602

RESUMO

For a long time, the kidney has been considered incapable of regeneration. Instead, in recent years, studies have supported the existence of heterogeneity of renal stem/progenitor cells with the ability to regenerate both glomerular and tubular epithelial cells. Indeed, several studies evidence that renal progenitor cells, releasing chemokines, growth factors, microvesicles, and transcription factors through paracrine mechanisms, can induce tissue regeneration and block pathological processes of the kidney. In this chapter the potentiality of the kidney regenerative processes is considered and reviewed, and the main classes of stem/progenitor cells that might contribute to the renal tissue renewal is analyzed. Moreover, we evaluate the role of biomaterials in the regulation of cellular functions, specifically addressing renal stem/progenitor cells. Materials can be synthesized and tailored in order to recreate a finely structured microenvironment (by nanostructures, nanofibers, bioactive compounds, etc.) with which the cells can interact actively. For instance, by patterning substrates in regions that alternately promote or prevent protein adsorption, cell adhesion and spreading processes can be controlled in space. We illustrate the potentiality of nanotechnologies and engineered biomaterials in affecting and enhancing the behavior of renal stem/progenitor cells. Although there are still many challenges for the translation of novel therapeutics, advances in biomaterials and nanomedicine have the potential to drastically change the clinical and therapeutic landscape, even in combination with stem cell biology.


Assuntos
Rim/citologia , Nanoestruturas , Células-Tronco/citologia , Humanos , Regeneração
13.
Semin Cell Dev Biol ; 51: 117-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26851624

RESUMO

Modern sequencing technology is revolutionizing our knowledge of inherited kidney disease. However, the molecular role of genes affected by the rapidly rising number of identified mutations is lagging behind. Xenopus is a highly useful, but underutilized model organism with unique properties excellently suited to decipher the molecular mechanisms of kidney development and disease. The embryonic kidney (pronephros) can be manipulated on only one side of the animal and its formation observed directly through the translucent skin. The moderate evolutionary distance between Xenopus and humans is a huge advantage for studying basic principles of kidney development, but still allows us to analyze the function of disease related genes. Optogenetic manipulations and genome editing by CRISPR/Cas are exciting additions to the toolbox for disease modelling and will facilitate the use of Xenopus in translational research. Therefore, the future of Xenopus in kidney research is bright.


Assuntos
Modelos Animais de Doenças , Nefropatias/genética , Rim/embriologia , Xenopus/genética , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Rim/patologia , Rim/fisiopatologia , Nefropatias/tratamento farmacológico , Mutação , Regeneração , Proteínas de Xenopus/genética
15.
Biochem Biophys Res Commun ; 496(4): 1176-1182, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29408475

RESUMO

To address the lack of organs for transplantation, we previously developed a method for organ regeneration in which nephron progenitor cell (NPC) replacement is performed via the diphtheria toxin receptor (DTR) system. In transgenic mice with NPC-specific expression of DTR, NPCs were eliminated by DT and replaced with NPCs lacking the DTR with the ability to differentiate into nephrons. However, this method has only been verified in vitro. For applications to natural models, such as animal fetuses, it is necessary to determine the optimal administration route and dose of DT. In this study, two DT administration routes (intra-peritoneal and intra-amniotic injection) were evaluated in fetal mice. The fetus was delivered by caesarean section at E18.5, and the fetal mouse kidney and RNA expression were evaluated. Additionally, the effect of the DT dose (25, 5, 0.5, and 0.05 ng/fetus-body) was studied. Intra-amniotic injection of DT led to a reduction in kidney volume, loss of glomeruli, and decreased differentiation marker expression. The intra-peritoneal route was not sufficient for NPC elimination. By establishing that intra-amniotic injection is the optimal administration route for DT, these results will facilitate studies of kidney regeneration in vivo. In addition, this method might be useful for analysis of kidney development at various time points by deleting NPCs during development.


Assuntos
Toxina Diftérica/administração & dosagem , Rim/efeitos dos fármacos , Rim/crescimento & desenvolvimento , Néfrons/citologia , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Âmnio , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Intraperitoneais , Rim/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Néfrons/efeitos dos fármacos , Regeneração/fisiologia , Células-Tronco/fisiologia , Resultado do Tratamento
16.
Clin Sci (Lond) ; 132(23): 2519-2545, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30442812

RESUMO

Congenital obstructive nephropathy is a major cause of chronic kidney disease (CKD) in children. The contribution of changes in the identity of renal cells to the pathology of obstructive nephropathy is poorly understood. Using a partial unilateral ureteral obstruction (pUUO) model in genetically modified neonatal mice, we traced the fate of cells derived from the renal stroma, cap mesenchyme, ureteric bud (UB) epithelium, and podocytes using Foxd1Cre, Six2Cre, HoxB7Cre, and Podocyte.Cre mice respectively, crossed with double fluorescent reporter (membrane-targetted tandem dimer Tomato (mT)/membrane-targetted GFP (mG)) mice. Persistent obstruction leads to a significant loss of tubular epithelium, rarefaction of the renal vasculature, and decreased renal blood flow (RBF). In addition, Forkhead Box D1 (Foxd1)-derived pericytes significantly expanded in the interstitial space, acquiring a myofibroblast phenotype. Degeneration of Sine Oculis Homeobox Homolog 2 (Six2) and HoxB7-derived cells resulted in significant loss of glomeruli, nephron tubules, and collecting ducts. Surgical release of obstruction resulted in striking regeneration of tubules, arterioles, interstitium accompanied by an increase in blood flow to the level of sham animals. Contralateral kidneys with remarkable compensatory response to kidney injury showed an increase in density of arteriolar branches. Deciphering the mechanisms involved in kidney repair and regeneration post relief of obstruction has potential therapeutic implications for infants and children and the growing number of adults suffering from CKD.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Hidronefrose/prevenção & controle , Rim/cirurgia , Regeneração , Obstrução Ureteral/cirurgia , Animais , Animais Recém-Nascidos , Rastreamento de Células/métodos , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hidronefrose/genética , Hidronefrose/metabolismo , Hidronefrose/patologia , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Camundongos Transgênicos , Neovascularização Fisiológica , Estresse Oxidativo , Fenótipo , Circulação Renal , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
17.
Exp Cell Res ; 342(2): 175-83, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26992633

RESUMO

The development of new strategies to preserve renal function after acute kidney injury (AKI) is necessary due to limited clinical intervention options. The organ-protective effects of mesenchymal stromal/stem cells (MSCs) and their conditioned medium (CM) have been investigated demonstrating that both separately promoted tubular recovery and ameliorated the outcome of AKI. Nevertheless, strategies to optimise the regenerative potential of both are highly needed. Here we investigated the effects of CM from adipose-derived MSCs (ASCs) preincubated in a hypoxic environment (Hyp). Protective factors were investigated by PCR analysis and a protein array in vitro. The expression of 64 of the 308 proteins assayed was found to be more than two-fold increased after Hyp. CM of Hyp-pretreated ASCs (pCM) was used to enhance regeneration in a mouse model of cisplatin-induced AKI (cisAKI). Renal function was assessed by measurements of markers for AKI and serum cytokine levels. The pCM significantly ameliorated serum creatinine and neutrophil gelatinase-associated lipocalin values, and also the levels of inflammatory cytokines IL-1ß and IL-6 in the serum of mice with AKI. Our work clearly showed that a Hyp preconditioning significantly increases the release of protective factors in ASCs and enhances the therapeutic effects of CM in cisAKI in mice.


Assuntos
Injúria Renal Aguda/prevenção & controle , Células-Tronco Adultas/transplante , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Injúria Renal Aguda/induzido quimicamente , Tecido Adiposo Branco/patologia , Células-Tronco Adultas/fisiologia , Animais , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultivo Condicionados , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL
18.
Curr Urol Rep ; 18(1): 2, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28092070

RESUMO

Currently in the USA, one name is added to the organ transplant waiting list every 15 min. As this list grows rapidly, fewer than one-third of waiting patients can receive matched organs from donors. Unfortunately, many patients who require a transplant have to wait for long periods of time, and many of them die before receiving the desired organ. In the USA alone, over 100,000 patients are waiting for a kidney transplant. However, it is a problem that affects around 6% of the word population. Therefore, seeking alternative solutions to this problem is an urgent work. Here, we review the current promising regenerative technologies for kidney function replacement. Despite many approaches being applied in the different ways outlined in this work, obtaining an organ capable of performing complex functions such as osmoregulation, excretion or hormone synthesis is still a long-term goal. However, in the future, the efforts in these areas may eliminate the long waiting list for kidney transplants, providing a definitive solution for patients with end-stage renal disease.


Assuntos
Bioengenharia , Falência Renal Crônica/cirurgia , Transplante de Rim , Animais , Bioengenharia/métodos , Humanos , Regeneração , Transplante de Células-Tronco , Células-Tronco
19.
J Am Soc Nephrol ; 27(5): 1400-11, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26516208

RESUMO

Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research.


Assuntos
Líquido Amniótico/citologia , Organoides/citologia , Podócitos , Células-Tronco , Animais , Células Cultivadas , Humanos , Rim/citologia , Camundongos
20.
Semin Cell Dev Biol ; 36: 57-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25128731

RESUMO

The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors.


Assuntos
Rim/citologia , Rim/embriologia , Células-Tronco Multipotentes/citologia , Organogênese/fisiologia , Células-Tronco/citologia , Células-Tronco Adultas/citologia , Diferenciação Celular , Células Epiteliais/citologia , Humanos , Mesoderma/citologia , Tumor de Wilms/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA